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SUPPORTING ANALYSIS A

INTERNAL WAVE WAKES OF A BODY MOVING IN A STRATIFIED FLUID

J.B. eller
Courant Institute of Mathematical Sciences

New York University

W.H. Munk
Institute for Geophysics and Planetary Physics

University of California, La Jolla
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I. INTRODUCTION

When a ship travels with constant velocity along the surface of

a liquid, it creates behind it a wakc which is called a "ship wave"

pattern. A similar pattern is produced by a submerged object moving

parallel to the surface. The usual analyses of such patterns apply

to liquids of uniform density in which only one type of propagating

- wave, called a surface wave, is possible. We shall consider ship

wave patterns in horizontally stratified liquids in which one or more

-- propagating internal waves exist in addition to the surface wave.

Keller and Levy (Ref. 1) have shown that in any such liquid the ship

wave pattern is a superposition of separate patterns, one for each

propagating internal or surface wave. They have also obtained formulas

for the wave height and particle velocity as functions of position

throughout the pattern. From these formulas one can see that for a

submerged object the patterns corresponding to some of the internal

waves can have larger amplitudes than that corresponding to the sur-

|- face wave. Therefore we shall examine the internal wave patterns in

. detail for a simplified, but realistic density profile in which in-

. finitely many propagating intenial waves occur. Previously Hudimac

(Ref. 2) studied the special case of a two-layer fluid in which just

one propagating internal wave exists.
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II. WAKE GEOMETRY

To describe the wake of a horizontally moving object, we replace

the object by a point which we call the source. We introduce cartesian

coordinates in the horizontal xz plane containing the source, with

the x-axis along the path of the source and the origin at the position

of the source at time t = 0. If the speed of the source is -v then

the coordinates x (t'), Z(W) of the source at time t' are

X (t') = -vt', z ( t') = 0 (2.1)

We wish to determine the wake corresponding to waves of a partic-

ular type emitted by the source, ie., to the surface wave or to the

n-th internal wave. We suppose that the source emits waves of this

type with all frequencies w and that the wave has a definite propaga-

tion constant or wave number k. It is convenient to express w as a

function of k,

w = W(k) (2.2)

The functional relation (2.2) is determined by the density profile,

and will be considered later.

Let us consider the phase -¢(xzk,T) at the point xz at time

t = 0 of the wave of wave number k emitted by the source at time -T,
T Z 0. If the wave is emitted at phase zero then

-0(Xz, kT) = kr - WI (2.3)

4 .



Here r is defined by

T r [x-xI (-T) 2 + Z2i (2.4)

2II

We seek those values of k and T for which 0 is stationary. This

requirement yields the the two conditions*

0 =-k = r - WkT (2.5)

TT
0 0=-T = kr - w (2.6)

From these equations we find thatLi r/= -Wk (2.7)r/T = Cg k(27

V(Xo-x)/r = c E w/k. (2.8)

., Here we have introduced the group velocity cg and the phase velocity

c defined by the last equalities in (2.7) and (2.8). Equation (2.7)

shows that the wave from the source x (-T),O travels to x,z at the

group velocity c . Equation (2.8) shows that the trace on the x-axis,
g

of the straight line perpendicular to the ray from x (-r),o to x,z,

travels with the source velocity -v.

I IIThe two equations (2.7), (2.8) determine the values of k and T

which make 0 stationary. When these values are used in (2.3), (2.3)

- will yield the stationary value of the phase at each point x,z. These

results are just Equations (11.5) and (11.6) of Ref. 1, which we have

redvived in a simpler way. We now use (2.7) to write T = r/C and

(2.8) to write w = kc. Then we can rewrite (2.3) as

. -0 = kr(1 - c/c) (2.9)

jLetter subscripts denote Dartial differentiation.

5
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Next (2.8) and (2.4) yield, if c : v,.

, . _c2 v2)
x = rc/v, z = r(l -c IV (2.10)

From (2.1) and (2.7),

x0 = V/c (2.11)

Let us now eliminate x0 from (2.10) by means of (2.11) and then

eliminate r by means of (2.9). Thus we obtain

rI - (cc /V2C 1Ii (c/v) 2
= (v/k) - 2g1 z = (0/k) -g ] (2.12)

Thus if c t v, (2.12) is the parametric equation of the wavefront 0 =

constant, where 0 is the stationary value of the phase and k is the

parameter.

6
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III. LONG WAVES AND THE PAR WAKE

Suppose that for k small, the function w(k) in (2.2) has the pow-
er series expansion

"(,0 = 1k - w2 k2 w w3 k 3 + ... (3.1)

Then

c = W1 - (2 k  +  '"(3.2)

-g = w1 - 2wk + (3.3)

Now (2.12) becomes

x = 1- 2 2 ...

k 2

-222 -2

z= (v/k) 2
( /kw2 (2 2 k + (3.)2 2 + 2

S-2W1

It is clear from (3.4) -and (3.5) that for long waves, for which k is

- - small, both x and z are large.

7 2
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To eliminate k we solve (3.4) for k and substitute into (3.5),

obtaining

wlx 2(¢w2 v~x)
z = 2 2 2 + (3.6)

(v -1  v

If w(k) is not analytic around k = 0, (3.1) is not valid and

therefore (3.6) does riot apply. This is the case for ordinary surface

waves in water of constant density and infinite depth, since for them1,

w(k) = (gk)'. Then (2.12) becomes

2 --. ) z= 0( g (3)7)
(gk) 2v k ) v k).7

From (3.7) we see that k must be restricted to the range k > g/v2 in

o'der that z be real, so a small-k expansion is not applicable in this I
case.

I
I
I
I
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IV. SHORT WAVES AND THE NEAR WAKE

For short waves or large k, we assume that w(k) has the asympto-

tic expansion

w~k)= - 2  
-42w(k) = N - Nk - N4 k - .,. (4.1)

-- Then c = Nk- _ N2k -
3 _ N4k -

5 + (4.2)

-3 -

c = 2N k + 4N k-5 + .... (4.3)
g 2 4

Upon using (4.2) and (4.3) in (2.12) and (2.13) we obtain

"= ((ik-[2 - -N k.)(2N 2k-3 +
x (ov/k) Nk~ - 3N2k-3 I

=(¢VlN) [.+ -N2- 2 + (4.4)

-3 (-/5 [Nk+ k+ ...) (l_-2 2 2  2 N2 2k-4 +

Nk- 3N 2.k- 32]

.. = + 1N N2 -

(20N 2/Nk[ + - + + .4. (4.5)

Solving (4.4) for k and substituting the result into (4.5) yields

""2N 2  v)3/24

.. z 2N 2  (x - /2 +.. (4t6)

9
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From (4.6) we see that each wavefront 0 = constant has a cusp at x =

Ov/N on the path z = 0.

In the case of ordinary surface waves in water of constant density

and finite or infinite depth, (4.1) does not hold so neither does (4.6).

For infinite depth (3.7) yields for k large,

z = /4v 2  + ... (4.7)

Then all wavefronts enter the origin x = 0 on the path z = 0. The

result (4.7) also holds for the finite depth case when the density is

constant.

10 j
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V. EXAMPLE

A. THE DISPERSION EQUATION

Let v(y) be the y dependent factor of the vertical component of

fluid velocity in a time harmonic wave of angular frequency w and

wavenumber k in a fluid of density p0(y) and depth h. Then v(y)

satisfies the equations

"g-1N2v k2w 2N2

vyy - + k2(w - ) v 0, 0 > y -h (5.1)

2 -

v y(0) = k 2w 2gv(0) (5.2)

v(-h) = 0. (5.3)

2 ) i I i
(Ref. 1, Eqs. 5.14 - 5.18). Here N (y) is the Vaisala frequency de-

fined by

N2 = (-g)(Po) y/p (5.4)

This problem has rntrivial solutions only if k2 is an eigenvalue.

We shall take for po (y) the following function

DO(y) = 0 z y >Yl

= Pl exp[(N2/g)(YI'y)] , Yl y > Y2  (5.5)

= p2 - P1 exp[(N 2/g)(yl-y 2 )] Y y2 
> y > -h

11
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I
The layer between Yl and y2 is the thermocline, within which N2 is

constant, and outside it N2 = 0. Now the coefficients in (5.1) are
piece-wise constant so (5.1) can be solved explicitly. If we ignore

the term g-1 N2vy in (5.1), the solution is simply I
v(y) = sinh (ky + a) 0 Z- y Yl (5.6) f
v(y) z C cos kvy + D sin kvy Yl z y > Y2  (5.7)

v(y) = B sinh k(y + h) Y2  y -h (5.8)

Here v is defined by

V2 = (N2/W) - 1 (5.9)

Condition (5.3) is satisfied by (5.8), while (5.2) yields

tanh a = w2/kg (5.10)

At y, and y. both v and vy must be continuous. This requ-irement

yields the four conditions 3
C cos kvy, + D sin kvy= sinh (kyl + a) (5.11)

C cos kvy 2 + D sin kvy,, = B sinh k(y2 + h) (5.12)

-v C sin kvyI + vD cos kvyI = cosh (ky1 + z) (5.13) 1
-v C sin kvy2 + vD cos kvy2 = B cosh k(y2 + h) (5.14)

We now combine (5.11) and (5.13) to obtain

[C cos kvyl+D sin kvyl]co3h(kyl+a)

+v[C sin kvy1-D cos kvy1 ]sinh(ky1 +) 0. (5.15)

Similarly we get from (5.12) and (5.3.4) 1
12
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C L cos kvy2+D sin kvY2]cosh k(Y2+h)

+v[C sin kvY2 -D cos kvY2 ]sirn k(y 2+h) = 0 (5.16)

In order for (5.15) and (5.16) to have nontrivial solutions for C and

D, the determinant of the coefficie nt matrix must vanish. This yields

the dispersion equation

tani kv(yl-y 2 )[!+v 2anh (kyl+a) tanh k(Y2+h)]

= v[tanh (kyl+a)-tanh k(y 2+h)] (5.17)

B. FAR WAKE

Let us examine (5.17) for k small, tentatively assuming that

w ' kc(O) as k tends to zero. Then (5.9) yields v - N/kc(0), (5.10)
2yields a kc 2/g and (5.17) becomes at k = 0

Nc- [yl-y2-h+(c 2/g)]
tan [(N/c)(yl-y2)] 2c2 (2 (5.18)

1 + N c [y1 +(c /g)](Y2+h)

This is an equation for c(0) which has infinitely many solutions which

we 'hall call c n(0), n = 0,1,2,.... To describe them we write

c n(0) - Ns aT <a n < Tr/2 (5119)

Here we have introduced the thenmocline thi.ckness s defined by

s = Yl - Y2  (5.20)

Then (5.18) becomes the following transcendental equation for an:

s[(s-h)(nr+a ) + Ns2an

Stan a n g(n + - n+an)
ta 2I +[, n )2+N 2 2/g( 2 h n/2 <a n< n/2 (5.21)

13
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For n large (5.21) yields

s(h-s) (5.22)an ,- , l(h+Y2 ]

If h >> s and h >> y21 (5.22) becomes(2

a n  , n >> 1 (-5.23)

For n =0O, (5.21) becomes 2 2

s[(s-h)a 0 + -]
tan a = 02 2 (5.24)

0 9 J

s2+(Yao+ )( +h).-

If 1y2 1 << h and N2s/g << 1, we can replace tan a by a .n (5.24).

The resulting biquadratic equation has -s its two positive 5ol" eti-"ns

- Ns (
a -- -n(S.25)

(gh)'

a+

Let us now use the results (5.23), (5.25), and (5.26) in (5.19)

and introduce the effective gravity g' defined by

N 2S 9 (5.27)

Then (5.19) yields I

co(O) - (gh) (5.28) j

c+(o) - (g'ly:) (5.29)

14 I



( -- ,-- s , n >> . (5.30)

n nr

3ince w " kc, it follows that c (0) = c(0) for each mode.

_,C £EAR WAKE

Now we shall examine (5.17) for k large, assuming that w N as

k tends to infinity. Then (5.17) becomes

tan kvs - -2v (5.31)

Since v is small, the solutions of (5.31) are

kvs n- 2v (5.32)

By using the definition (5.9) cf , we obtain from (5.32)

/ / n\22
[w = N- 1- + N,, [2 -, _ N - N k' 2 (5.33)

Here N2 = (nv/s) 2N. Therefore from (5.33) we obtain

W N N ( n.2("" = - k ks;2/2 (5.34)

" dw Ns(nir) 2  (535)
c= K (ks+2)3

These results hold only for n $ 0 as we see from (5.32).

D. SURFACE WAVES

If w tends to infinity as k does, we must proceed differently.

Then ,2 ,-I- and (5.17) becomes

tanh ks [l-tanh(ky1 +a)tanh k(Y2+h)] tanh(kyl+a)-tanh k(Y2+h) (5.36)

15



Thus

1 - tanh (kyl+t) - tanh (kyl+a) - 1 (5.37)

It follows that a must tend to +- as k does. Then (5.10) yields

w - (kg) (5.38)

This is the result for the surface wave.

E. DEEP OCEANS .1
In the oceans the depth is so large that kh >> 1 even for the

smallest practical value of k. In this case it is possible to simplify ]
some of the preceding results. For example, in (5.17), we can set

tanh k(y2+h) = 1 + .... Then the solution of (5.17) for small k can I
be carried beyond the leading term given in (5.29) and (5.30) with the

result
yi

U-

W = (g'lyll) k[l - k + ... ] , n = 0 (5.39)

n r k[l s2 k + ] , n >> 1 (5.40) 1

In writing these results we have assumed that wi/glyli << 1, since in

the oceans this number is typically of the order 10-3.

T

+

1r

1*
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VI. WAVE HEIGHT DUE TO A MOVING SOURCE OR DIPOLE

The wave height so (x,z,t) has been determined for a unit

source
point source of fluid moving with the constant velocity -v at the
depth y0. The asymptotic form of 'sourcn far from the source is

1 B
qsource(X+vtlz) - r v2 c2 tv cos (kr-wT+Tr/4) (6.1)2 (v -c )

(Ref. 1, Eq. 11.14). The sum in (1) is over the modes of wave propaga-

tion, and for each mode over the roots k and T of (2.7) and (2.8). The

functions w(k) and c(k) = w/k are determined for each mode as in Sec-

tion 5 and B is given by Ref. 1, (10.9).

B = 12 I~ Wl -1N22w~ (6.2)
ww [w-N (O)]wk(0) -gk (0)]

Here w(y) = po(y) v(y) where v(y) is a nontrivial solution of (5.1)

and (5.3).

If the source is a dipole of unit strength oriented along its

direction of motion, the wave height I dipole can be obtained by differ-

entiating (6.1) with respect to -x. Only the phase -0 of the cosine

need be differentiated and in view of (2.5) its derivative is -krx +
WTx. Alternatively we can obtain -0x from (2.12). In either way we

obtain

k(c-c ) B
dipole(x+vt,z) - v 2 v ) sin (kr-wT+4) (6.3)diol A4v(l-cc 9V-2)(22)

17
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With the help of (2.3), (2.10) and (2.13), the equations (6.1)

and (6.3) can be written in the shorter forms:

,B
Psource =  -- cos (¢-Ti/4) (6.4)

ndipole = - sin (0-n/4) (6.5)

In the example of Sec. V, we have N(O) = 0, vk = y cosh (ky+ct), and

Vky = cosh (ky+cy) + ky sinh (ky+*t). Then (6.2) becomes

g cosh ot p ( 0) (6.6)

1

~1.

i I
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VII. ILLUSTRATION

A. NORMALIZATION

Figures (1) and (2) are drawn for a density distribution consist-

ing of a "thermocline" of thickness s = yl-y2 within which N is con-

stant, and outside which N2 = 0 (i.e., the case treated in Section V).

We collect the dimensionless formulae used in the construction. All

distances are normalized with respect to the thermocline thickness s:

X = x/s:, Y = y/s, Z = z/s; K = ks (7.1)

I? It I?

and all frequencies to the Vaisala frequency N, so that

Q = w/N, C = Q/K = c/(Ns), V = v/(Ns) (7.2)

F = v/c = VK/0 is a "Froude Number," measuring source velocity rela-

tive to the speed of internal waves. We consider only F > 1.

The dimensionless amplitude along any line of constant phase] 0, 2T, ... is given by

source 2" B
S NS S 2Z12V

lldipole - 2 -  BO(IF-2) 15
ss xV (6.51)

where Ns

2 PNY0 )v(Y0 )
B= g cosh (6.6t

19
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The expression p o(yo)v(yo)/Po (0) in (6.61) depends on the depth of the

source, Yo = sY0, in accordance with (5.5) - (5.8). The simplest case

is that of the source above the thermocline, Yo Y1 in which case we

find

p(yo)V(yo) N2 s 02
(0) = sinh(KYo+a), tanh a (7.3)

B. NEAR WAKE

Equation (4.6) with N2 determined by (5.33) can be written in the

dimensionless form

n-' I --- " (7.4)

Here 0 = 2, 4n,..., and n = 1,2 ... designate successive crests for

various modes. The cases 0 = 0 and n = 0 are beyond the scope of the

present approximation. The wave crest can now be constructed for any

specified n and 0.

For given n, 0, X, and Z, the amplitudes can be obtained as follows.

First we eliminate N2 between (4.3) and (4.5) to obtain z = c g/N + ... )

with cg determined by (5.35). This leads to the dimensionless formula

Z - 0(n) 2 (K+2)3  (7.5) °.

from which K can be calculated. Furthermore from (5.33) and from the

definition of F we have

0 - 1 - ) (7.6)

F = VK/Q (7.7)

C. 20



By differentiating (7.6) we find

C. FAR WAKE(K2(78

Equation (3.6) can now be written

Z = (F - 1[ lXE X + .. ](7.9)
0 0

wbere F and X are given byK0 0
F - (7.10)

oW 2 2 2
0 W2 S(v 2_W2

The mode n 0 corresponds essentially to a theniiocline displacement,

and the mrodes n = 1,2,,.. to thermocline distortions. We need to treat

these cases separately.

Proma(.) (5.39) and (5.40) we find

= (gIylj). W2  (g Iy1D')2Iylj/2 for n = 0 (7.12)

W (g'sYI/nTT, W 2 =(g's) s(n17F)-3 for n > 1 (7.13)

By using (7.12) and (7.13) in (7.10) we obtain

F 0=IY1I;V vfor n 0; F 0= nnV for n >>1 (7.14)

We now define 6(n) by

6(n) = 2 for n =0; 6(n) =1 for n > 1 (7.15)

2.L
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Then from (7.11) - (7.15) we obtain

OV2F 

,!0o 6(n)(F2_l)

We now use (7.12) and (7.13) in (3.5) to get
Z~6OF°(F 2_01

0 0V F(-l2K2 (7.17)

V K

From (7.17) we can find K in terms of Z and 0. Then from (3.39) and

(5.40) we find

0 = (V/o)K - 6 (V/F 0 ) 3 K2 + ... (7.18)

Differentiation of (7.18) yields

KM - 26-1:1 - 26- 1 (V/Fo02K]-3 (7.19)

D. RESULTS

We have computed wakes for the following cases:

Source depth Y0 = 30 m

Thermocline depth Y, = 50 m

Thermocline thickness s = 10 m

Vaisala frequency N = 10- 2 sec - 1

Figure (1) and (2) portray the near wake for the cases V = and 10,

corresponding to source velocities v = VNs = 0.316 m/s and 1 m/s,

respectively. The X-axis extends from X = 0 to 200, corresponding to

2 km ful. scale; the horizontal Z-axis is drawn to the same scale.

With increasing v, the wake field is rapidly concentrated along the

source axis, particularly for large n and 0. We have (improperly)

used the n >> .L approximation for the cases n = 1, 2. The case n = 0

22
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the far wake is off-scale in the example shown. The computed source

,. functions diminish rapidly with distance from the source axis. Unlike

the case of a surface (Kelvin) wake, internal sources moving at quite
jmoderate velocities through typically stratified fluids produce in-

ternal wakes that are sharply concentrated along the source axis.

j-2

: 7.
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ABSTRACT

The internal waves produced by either a moving body or the

collapsing wake behind a moving body in a stratified fluid are calcu-

lated asymptotically (at large distances behind the source) on the

hypotheses of small disturbances, the Boussinesq approximation, and

the slender-body approximation (the transverse dimensions of the body

and wake are small compared with the wavelengths of the significant

internal waves).

Explicit results are given for two, complementary models: (a)

a constant-N model, in which the density gradient is constant and (b)

a thin thernocline model, in which the density gradient Peaks sharply

in a thin layer and is elsewhere negligible. The internal-wave spec-

trum is continuous in (a) and discrete in (b); however, only the domi-

nant mode is included in the explicit results given for (b).

A WKB solution also is given for a thermocline model. This

approximation does not give an adequate representation of the dominant

mode but does provide estimates of the contributions of the higher

modes that are neglected in, the thin-thermocline model. These contri-

butions of the higher modes that are neglected in the thin-thermocline

model. These contributions are typically negligible relative to that

of the dominant mode in the neighbourhood of the maximum., free-surface

disturbance.

.2
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I. INTRDDUCTION

We consider the disturbance generated by a horizontally moving

source in an incompressible, inviscid, vertically stratified fluid.

This disturbance comprises the near field, which dies out more or less

rapidly with distance from the source, and the radiated field which

consists of internal gravity waves. We focus primarily on the radiated

field, but emphasize that there may be situations of interest in which

the amplitude of the near field is not small compied with that of the

radiated field. In particular, the radiated field in a steady flow

(uniform translation of the source) appears only in the lee of the

source, so that the near field must be taken into account in calcu-

lating the disturbance forward of, or directly over,, the source.

The appropriate similarity parameter for the generation of inter-

nal waves by a moving source is the reduced frequency (or inverse

Froude number)

0 = Nt/U (1.1)r it t it
where N is a characteristic value of the intrinsic (or Vaisala) fre-

quency of internal waves (see Eq. 2.9 below), t is a characteristic

length of the source, and U is its speed. The frequency spectrum of

the internal waves is (0, Nmax). The intensity is typically a rapidly

increasing function of Q (and, therefore, a decreasing function cf U)

for 0 < Oc, say, where Qc is a characteristic value of 0, of order

unity, at which nonlinear phenomena intervene. Internal-wave genera-

tion is weak for 0 >> Oc, and as 0- (U - 0) the flow tends to a

plu type, in which a horizontal column of fluid is pushed in front

of the body. /
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We develop the equations of motion in Sec. II on the hypotheses

of small disturbances and the Boussinesq approximation (in which only

the buoyancy effects of density stratification are included, the iner-iitial effects being neglected). We obtain formal solutions of these

equations in Sec. III with the aid of integral transforms and special-

ize these to a moving dipole (by which a body may be approximated if

0 << 1) in Sec. IV and to a slender collapsing wake (a region of
stirred fluid) aft of a moving body in Sec. V. We give explicit cal-
culations of the internal-wave field for a constant-N model in Sec.

VI and for a thermocline model, in which N peaks sharply in a region

of limited vertical extent, in Sec. VII and Sec. VIII.

The constant-N model is characterized by a continuous spectrum
(since we assume the fluid to be either infinite or semiinfinite) and
may be representative for laboratory configurations, although finite-
depth effects could be important in such configurations. The thermo-
cline model is characterized by a discrete spectrum and affords a more

realistic model for the ocean; we give explicit results only for the
dominant mode on the hypothesis that the thickness of the thermocline
is small compared with both its depth and the wavelength. We give a
WKB solution for the therocline modcl in Sec. IX. This solution does
not given an adequate description of the dominc.nt mode for a thin

thermocline, but it does provide adequate estimntes for the higher

modes.

The disturbance produced by a moving body has been calculated
previously by Hudimac (Ref. 1) for a two-layer model of the ocean and
by Xeller and Levy (Ref. 2), Lighthill (unpublished papers), and Mei

(Ref. 6) for various models. There is a close analogy between two-
dimensional, time-dependent disturbances and three-dimensional dis-

turbances produced by a uniformly translating source. Keller has
obtained results similar to (but more general and less explicit than)
those reported here. Many reports from Hydronautics, Inc. also deal
with the problem, both experimentally and theoretically. Nevertheless,
"i- Appars that some of the results given here are new. Perhaps the

most interesting are the asymptotic approximations to the respective,
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lateral strains produced at the free surface by the displacement

(dipole) and wake (quadrupole) effects of a submarine that is small

compared with the length of the internal waves, i.e., 0 << 1. Thus T

we have
9

0.4a b4(1+Id-hI) (Nh/U!xd ) (.1.2)

5 11

Itq I O.8a b (h+Id-hI) (h q (1.3)

where a, t, d and U are the radius, length, depth and speed of the

submarine, D and h are the thickness and depth of the thermocline,

N and h are the intrinsic frequencies at depths d and h, and xd
and A are the respective distances behind the submarine and the plane

q
in which its wake begins to collapse.
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II. EQUATIONS OF MOTION

We consider small disturbances in an inviscid, incomprssible,

Boussinesq fluid in which the (hydrostatic) equilibrium distributions

of density and pressure are p0 (z) and po(Z) and z is measured positive

upwards. Invoking the requirement that particle density be conserved

and linearizing the equations of motion, we obtain

p = po(z-*) # p(Z )-pW(z)4 (2.1)

v*v = m, (2.2)

and

Pov = - 7 - 00, O, p), (2.3)

where p denotes the density, * the vertical displacement of a particle,

v the velocity, in the source strength per unit volume, and p the pres-

sure, each as a function of the Cartesian coordinates (x,y,z) and the

time t; letter subscripts denote partial differentiation, and the

triplet t.., -, -1 denotes the Cartesian conmnonents of a vector. We

seek a ,olution of (2.1)-(2.3) for a prescribed source density that is

introduced at t = 0, an initial displacement o'k'x,y,'z), and an initial

velocity v (x,y,z).

Let 0 be a potential such that

P PO -Pot (2.4a)

and

v + f(0 sy, t (2.4b)
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Substituting (2.4b) into (2.2) and invoking the continuity equation for

-v.0 = 0, (2.5)

we obtain

AO + M= (2.6)

where A a + b4 (2.7)x y

is the two-dimensional Laplacian, and the operators 5x and oy imply

partial differentiation with respect to x and y. We have assumed that

m = 0 at t = 0; if m = mO at t = 0, we need only replace the right-
hand side of (2.5) by m0 and m by m-mO in (2.6). Substituting (2.4ab)

into (2.1) and the z-component of (2.3) [the x- and y-components of

(2.3) are satisfied identically by (2.4ab)], eliminating 0 through

(2.6), and invoking the Boussinesq approximation (thereby neglecting

PO except where it is multipled by g), we obtain

2 N2
N) = m zt; (2.8)

where

N2 = N2(z) -gp0(z)/0(z) (2.9)
it t t

is the square of the intrinsic (Vaisala) frequency.

We seek the solution of (2.8) for the initial conditions (whi(h

follow from our definitions)

I = to, 0 = *t = m = 0 (2.10)

and the boundary conditions
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.10 , 1*1 < - (II, lyl (2.11a)

and

= 0 (z = 0, -D), (2.lb)

corresponding to a free surface at z = 0 (which acts approximately as
a rigid boundary for internal waves) and a rigid bottom at z - -D.

A convenient measure of the disturbance at the free surface is

the lateral strain,

t

=f y (xyO,)d , (2.12)
-~yy

which plays a significant role in calculating the interaction between

the internal waves and pr.--existing surface waves.
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III. FORMAL SOLUTION

We define the transforms

= £x;yy, , M = £3xaym, *0 = 3 3y o, (,.la,b,c)

where I

C( ) a e ( t , -~ (n if i et( )da (Ra > 0), 1
0 -jC (3.2a,b)

X( = e-ax()dx, Jx + (2nT- f e( )dry, (3.3a,b)

and similarly for Jy with x and a replaced by y and 8, respectively.

Transforming (2.8) and invoking (2.1.0) and (2.11a), we place the result

in the form

( - 2 - :-1) = a-M z + K
2 -3" 2 O, (34)

where

X= K./,§TN -a)2 (X > 0) (3.5) 1

K = a (K 0), (3.6) |

and bz implies partial differentiation with respect to z. The boundary j
conditions for * are given by (2.11b).

The Green's f,mction for (3.4) and (2..1b) is determined by j
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2 2
(a- X )G(z,C) = 6(z-C) (3.7)

I and

1 G(O,C) = G(-D, ) = 0 (3.8)

and yields the formel solution (after integrating the term in M by

parts):

S0 -a r(z,)M(C)dC + K2a - G(z,C)N2 (C)o(C)dC (3.9)

We have suppressed the explicit dependence of the transforms on t, 8

and a; the integrals nre over the domains of M and *0, which we assume

to be of finite extent, and 6 is Diracts delta function.

Transforming (2.6), we obtain

§(z) = K-2 (a*z-*0z - M), (3.10)

which completes the reduction of the formal solution to the deternina-

tion of the Green's function and the evaluation of inverse transforms.
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IV. MOVING DIPOLE

We now consider the disturbance produced by the dipole

m = UD6 6(x+Ut)6(y)5(z+d) (t > 0), (4.1)x [

which is introduced at x = y = t = 0 and z = -d and moves along the

negative-x axis with the uniform speed U. The parameter D is the

dipole moment and has the dimensions of volume (see below). Trans-

forming (4.1) in accordance with (3.1b), we obtain .

M = UDi (a-iaU)-16(z+d) (4.2) I
Substituting (4.2) into (3.9) and assuming the fluid to be initially

undisturbed (f 0 0), we obtain J.

= -UDiya- -iU)- 1G(z, = -d (4.3)

The asymptotic limit of Q as t is determined by the pole of

the Laplace transform at a = iQU (corresponding to t U x in the I
equations of motion), which yields

A DG1(z)e iUt (t " M), (4.4) 1

where

G W -G C -d, a AN (4.5)
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We determine the behaviour of X, qua function of t, in (4.5) fr om the

antecedent requiremenit that RX > 0 as a approaches the imaginary axis
from the right:

iKat 4r O ( cyj < k), (4.6b)

where k = k(z) = N(z)/U (4.7)

( also has an essential singularity at a = 0, which makes no contri-
bution to the wave field, and branch points associated with the branch

points of X, qua function cf a, which contribute transients that die

out at least as rapidly as l/t.) Taking the inverse Fourier transform

of (4.4), we obtain

DxUt (y z) *d(X+Ut,y,z), (4.8)

where the subscript d implies dipole.

Substituting (4.2) and (4.3) into (3.10) arnd proceeding as above,

we obtain the corresponding result

~ UD3 1  a- fio/K2 )[Gz(z)-8(z+d)]1
x+Ut y lz

d0 d(X+Uty,z) (4.9)

Substituting (4.9) into (2.12), we obtain

-D3-I 3-i K) 2  0 d(X+ty) (4.10)

We apply these results to: (i) small bodies of characteristic

length a and arbitrary shape and (ii) slender bodies of characteristic

transverse and axial lengths a and t, where, by hypothesis,
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ka N(-d)a/U << 1 (4.11)

and

e = a/ << 1 (4.12)

We add that a slender body for which kL << 1 is also small.

The solution to the problem of a small body moving with uniform

speed U follows from the fact that the flow in the neighbourhood of

the body is locally potential (ka << 1 implies that the effects of

stratification are negligible over a region of scale a). Invoking the

well-known result that the potential flow past a body is equivalent

to that induced by a dipole at distances R that are large compared

with a, we may match the potential-flow solution to the solution

(4.8) in an intermediate region a << R << I/k and then use (4.8) and

(4.9) to determine the far field (Rayleigh-scattering approximation).

The dipole moment is given by Lamb (Sec. 121a, Ref. 5).

D = VV.. (ka << 1), (4.13)

where V is the volume of the body and p V., its virtual mass with re-
0~

spect to axial translation in a homogeneous fluid of density po(-d).

The solution to the slender-body problem follows by analogy with

the corresponding problem in aerodynamics, cf, Ward (Ref. 7). Omitting

the details, we obtain

T(x~y~a~t) -fS(§J)[ d (X+Ut-g,y,z)/D~d

(ka << 1, a < 4) (4.14)

and an analogous result for 0, where S(x) is the cross-sectional area

of the body, and the integral extends over the body. We remark that

(4.14) reduces to *d if k << 1, corresponding to the fact that V.. <<

V for a slender body.
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V. COLLAPSE OF MIXING REGION

We consider next the collapse of a small [in the sense of (4.11)]

mass of fluid that has been stirred--for example, by turbulence--in

such a way as to conserve its mass but alter its potential energy with

respect to a horizontal plane through its original center of gravity,

say z = -d. Our definition of d then implies

fff (z+d)po(z)dV =0 (5.1)

conservation of mass implies

fffp 0 (Z- 0 )-Po(Z)]dV -fff Po0 dV = 0, (5.2)

and the potential energy is given by

Eo = g (z+d)po(Z-'%o)dV ' f -g (z+d)Po(z)*odV (5.3a)

= Qp0 (-d)N 2(-d), (5.3b)

where Q is the quadrupole moment of the -.egion.

Considering now the second integral in (3.9), we expand G(zC)

about C = -d to obtain

fG(z,C)N 2 (C)To()dC = G(z, -d) 2 (C)%o(C)dC

+ G C =(z, -dG)(+d)2(C)I0(C)dC (.4)
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and reduce (3.1c) to x(

()*f o(x,y,C)dxdy (5.5)

by virtue of our assumption that the dimensions of the mass are small.

Substituting (5.5) into (5.4), we find that the first integral on the

right-hand side vanishes while the second reduces to QN2(-d) by virtue

of (5.2), (5.3), and the Boussinesq approximation. Substituting the

resulting approximation into (3.9), we obtain

0= QN2(-d)K 2 o 3GC(z, -d) (5.6) j

We apply this last result to a collapsing wake in the lee of a

small moving obstacle on the hypothesis that the fluid in the wake is

mixed, and perhaps also augmented by turbulent entrainment, over a dis-

tance x0 behind the obstacle, at which point the turbulent wake begins

to collapse and releases the potential energy UE'(x o) per unit time.

The resulting, asymptotic (as t - ) disturbance then is given by

t

-0 -Q' )N2 (-d)f dT Ia. 1 o - l ' O-3 (x,-d)) (t . c) (5.7)
SO

Carrying out the integration with respect to T and invoking the fact

that (as in Sec. IV above) the inverse-Laplace transform of the result

is dominated by the pole at a = iaU, we obtain

-i y1 (K 2/i 3 )Gl(Z)]

- q(X+Ut-x (5.8)

where: k is given by (4.7); G1 is given by (4.5); Q'(x ) is the cross-

sectional quadrupole moment of the wake, is defined as in (5.3b), and

has the dimensions of (length) ; the subscript q implies quadrupole.

Similarly, 1
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1:0 Uk 2 (d)Q (x )31 Utx3(t 2 G ,(z)-6kz+d)]J

and

i (- dOx 0 +t- ti(o lot )G iz(Z)3 Iz 0 q fl(x+Ut-x0 y) (.0
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VI. CONSTANT-N MODEL

We now consider the specific model of a fluid in which N (and,

hence, also k) is constant. This is a realistic model for those lab-

oratory configurations in which the effects of lateral boundaries may

be neglected. It is not a realistic model for typical oceanic config-

urations, but it does provide an extreme complement to the thermocline

model of the following sections. We give special c.'nsideration to the

limiting case D = -, which is appropriate for oceanic applications.

The solution of (3.7) and (3.8) is given by

sinh(xz)sinhF( A+D)]
G(z,)(z > C(6.1)

wherein z and C must be interchanged if z < C. We observe that G is

a meromorphic function of X2 , and therefore of each of Y, 8 and a,

for finite D, and has the Fourier-series representation

G(z,C) = -2DE sin(nnz/D)sin(ni /D) (6.2)
n=l (XD)2 + (nl)

2

We consider first the limiting case D -, for which (6.1) re-

duces to

G(z,C) = X-lexcsinhXz (z > C, D = o), (6.3)

which has the branch points of X, qua function of each of t, 0 and a.

Substituting (6.3), together with the complementary result for z < C

into (4.5), we place the result in the form
-Xllz~dl X1 (z-d)

GI(Z) = e sgn(z+d) - e(6.4)
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if
where X is given by (4.6). We may interpret (6.4) in terms of a

source at z = -d ond an image at z = d.* We carry out a detailed anal-

ysis only for the first term and move the origin to z = -d with the

implicit understanding that z must be replaced by z+d and the image

solution incorporated in the final results. In brief, we consider a

(dipole or quadrupole) source at the origin of an unbounded fluid in

which N is constant,

G(z,C) M Yle-I I, (6.5)

and _l~sn
Gl(Z) =- X l'sgnz 

(6.6)

Substituting (6.6) into (4.9) and invoking (4.6b), we obtain

Od(xy,z) = -(DU/8 2)ff ( 2+82 )-(k2 _a2-)ei( '8)dadS, (6.7)

where

X = ax + By + ixllZI (6.8a)

-i 2,2 % 2, 2

=ax + a- (k-a (a +B ) IzI (6.8b)

Similar results may be obtained for Id' 0q and Iq by substituting (6.6)

into (4.8), (5.9) and (5.8), respectively. We recall that x now is

measured in a reference frame moving with the source (x replaces x +

Ut in the development of Secs. II-IV above) and that 0d is an asympto-

tic solution that is strictly valid only for kx - - (although experi-

ence suggests that the asymptotic approximation is likely to be quali-

tatively valid for only moderately large values of kx, say kx > 1).

We obtain stationary-phase approximations to 0d' d' Oq and *q

in the appendix to this analysis. Introducing the spherical polar

coordinates R, 0 and y according to

"The image term in (6.4) also nay be expressed as + e- z-d sgn(z-d).
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x = RcosO, r = (y2+z2 )% = Rsin@, y = rcoscp, I

z = rsinq (0 < 6 < TT, 0 < Y < 2n) (6.9) "

and letting kR with e and p fixed, we find that X(a,8) has two (no) -
points of stationary phase if 0 < (>) n, reflecting the fact that
internal gravity waves (for which the group velocity exceeds the phase

velocity) appear only downstream of their source in a steady flow. I
Substituting the resulting approximations into (2.4b), we obtain the

velocity fields

-(k 2 DU/2rR) 8 2 i 2 ei 2 )

(kR - , 0 < e < %i), (6.10)

3
and v - (k3Q'u/2nR) csc cos p+sin 2 Osin 2 2 cos(kRsinp)

(kR - , 0 < e < !ir), (6.11)

where

= -sine, cosecosq, cosPsincp) (6.12)

is the unit vector in the direction of increasing 8; both Zd and v

are asymptotically transverse to a spherical surface with center at
R = 0 (a well knownm property of internal gravity waves).

The maximum velocities given by the approximations (6.10) and
(6.12) are achieved in the neighbourhood of 8 = 0; however, the approx-
imations are not uniformly valid as 9 - 0, partially in consequence of
the restriction kr >> 1 (implicit in the staionary-phase approximation)
and partially in consequence of the slender-body approximation, which

* does not give an adequate description of the interference among the
shorLer waves (which are especially important in the neighbourhood of
8 = 0) that originate at various points of a source of finite cross
section. Assuming r << x in (6.10) and (6.11), but imposing the re-
striction kr >> 1 (so that 1/kR << << 1), we obtain
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an "(k 2DU/2n)lylzr-4 r sin(kxz/r) (kx >> kr >> 1), (6.13)

~and

v q- (k3Q'U/2Tr)x2 y 3r-7r cos(kxz/r) (kx >> kr >> 1), (6,14)

where

r= (0, y, z). (6.15)

The corresponding approximations to the lateral strains, as de-

fined by (4.10) and (5.10), are (we omit the details but emphasize

that the results calculated from Cd and ¢q have been doubled to incor-

porate the effects of the respective image solucions at the free sur-

face)

d (k2dD/TT)xly3r-6sin(kxd/r) (kx >> kr >> 1) (6.16)

and

'ii - _(k3Q'/n)x3 1y, 5r-9cos(kxd/r) (kx >> kr >> 1), (6.17)
,- q

wherein r = (y2 + d2) . The maxima of I d and iq with respect to IA
are given by

=(kD/8.d 2 )(kx)sin(kx/V2) at y = d << x (6.18)

and

= -0.045(Q'/-rd 4)(kx) cos(2kx/3) at y ' k4Id < x. (6.19)

The loci of constant phase for 11d and Tq are hyperbolae, corresponding

to the intersections of the conical, stationary-phase surfaces,
kRsiny = X(as , is), with the free surface; the loci corresponding to

the approximations of (6.16) and (6.17) are

(kx/x) - (y/d) = 1. (6.20)
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It does not appear possible to obtain a simple, asymptotic approx-

imation (for kx >> 1) to (6.7) that is uniformly valid with respect to

kr; however, we can obtain an approximation that is valid at y = 0

(althouah still suffering from the aforementioned deficiency of the I
slender-body approximation) by first evaluating the Fourier integral

over 8 [Erdelyi et al, Ref. 8, Sec 1.5(27)], whence

Cd -DU42) ei XK[ 2(y2+z2) 2 223 2_
= -K -+ ) a, (6.21)

where the rcal ua.L of the radical is non-negative, and K0 is a modi-

fied Bessel function of the second kind. Differentiating (6.21) twice
with respect to y, integrating with respect to x, setting y = 0 and

z = d (in the reference frame with origin at the source), and doubling f
the result to incorporate the effect of the image solution, we obtain

d(x,O) = (D/2Tr2d -CO Kid( 2 -k2 )eiXd. (6.22)

The dominant contribution to the integral in (6.22) comes from the i
neighbourhood of a = k, which yields

d -(D/d 2 )(2k/Tr 3x) sin(kx-rr) (kx >> 1, y = 0). (6.23)

Similarly, we obtain I
q (6Q'/d 4 )(2kx/TT ) sin(kx- n) (kx >> 1, y 0). (6.24)
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VII. THERMOCLINE MODEL

We consider now the discrete spectrum of internal waves associ-

r ated with a thermocline model, for which (by definition)

2 2 2
S0 < N2(z) < N2(-h) = Nh (7.1)

and

0
fN2(z)dz N2 b + gAP (7g2

h p (7.2)
-D

where -h is the vertical coordinate of the thermocline, that is the

plane in which N(z) achieves its maximum value, Nh; Ap is the total

increase in density across the thermocline (Ap << p by hypothesis);

and g' is a reduced gravitational acceleration. Setting

a = iw (7.3)

in (3.5) and (3.7), we obtain

z + (K/w)2N2(z) - K2]G(zC) = b(z-C) (7.4)
z

invoking the assumptions, (7.1) and (7.2) above: that N2(z) > 0

and that the integral of N2(z) is bounded (a non'trivial restriction if

D = =), we infer from Sturm-Liouville theory that there exists a dis-

crete set of eigenvalues, say K., and eigenfunctions, say f,(7), that

satisfy

"'It would be more conventional to regard the wave speed, cn w/K,
as the eigenvalue for the Sturm-Liouville problem, but we find
it more convenient for the subsequent development to introduce K
as the eigenvalue and to regard both w and K as prescribed. n

4q
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(6 + (KnN/w) - 2 If (Z) 0, (7.5)

fn (0) = f (-D) = 0, (7.6)

and
0

f(N/w)2 f mfndz = 6mn (7.7)

-D

where 6mn is the Kronecker delta. Expanding G in the fn in the usual

way, we obtain

2 -1 (7.8)G(z,C) (K K( n ) f n(z~fn
n

Substituting (7.8) into (4.5), we obtain

Gl(Z) = - K( - n) f'(-d)f (z) (w = Uc), (7.9)
n n rn nn

where f'(-d) = (df/dC) =_d.

Referring to Secs. IV and V above, we seek the far field (kx >> 1)

of a moving source. Substituting (7.9) into (4.8)-(4.10) and (5.8)-

(5.10), invoking the Fourier integral

1 32 2 )- 1 1 -alylA
-2a-+ a ) = ,a e (7.10)

y

and setti-;ng w =Ucy, we obtain

to = -(D/4T-),f Yn - iCiXYnlyf(d)

.{(iaU/K2 )f(z)[li 1-1y e-(I!Y-n)IYlj, f(Y)Ida'

(7.11)
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r (o4 }* k ~k(-d)Q'(x )/41T)F, (2 )1cXn I vIf'(-d)
q q 0f n fn

I 1-Uf'(z), (iK 2 /e)f (z)1da (lyl > 0), (7.12)

nn n

r (7.13)

fand Tiq = (k2 (-d)Q'(x 0 )/ 4T) f n

(7.14)

where = 02 _ K2) (9, 2.0), (7.15)

and f'(0) df /dz at z= 0.n n
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VIII. THIN THERMOCLINE APPROXIMATION

We carry the development of the preceding section further for a

thin thermocline, for which N (z) differs significantly from zero only
in a small neighbourhood of z = -h, where it exhibits a single, sharp

peak. We also neglect bottom effectz by setting D = -. This model is

perhaps more realistic than, but in any event complements, that of Sec.

VI.

The dispersion relation for the dominant mode of a thin thermo-

cline may be expressed in terms of the thermocline parameters Nh and
b, as defined by (7.1) and (7.2), and the depth of the thermocline on

the basis of the assumptions

Nbb/U k h b << I and b/h << 1. (8.1a,b)

Setting N2 = 0 for iz+hl >> b and invoking the boundary conditions (7.6)
and the requirement that f(z) be continuous across z = -h as b - 0, we
choose the solutions above and below the thermocline in the form

=f -cschKh sinhKz z > h), (8.2)f(z) e e K(z+h) <J

where fh = f(-h). Integrating (7.5) across the thermocline and remark-

ing that both f -K 2f and N2 vanish except in the immediate neighbour-
hood of z = -h, where f' is discontinuous, f = fh' and the integral of

N2 is given by (7.2), we obtain
0 I-h+ e

0 = (f /-K 2f+(KNw)2 f~dz = lrn [f h
1o -.h-c

-h+e

+ (K/w)2f h N2dz = -K(cothKh + )fh + g'(K1 /w) 2 fh'
.h3- -

(8.3)



I

I Solving (8.3) for w 2 we obtain the dispersion relation [Ref. 9,
~(5.3.7)]":

2= ]g'K(l-e- 2Kh (8.4a)

- g'hK2 (l-Kh + ... ) (Kh - 0) (8.4b)

2g 'K (Kh - c). (8.4c)

r Similarly

lul . wl/U kh[ Kb(l-e-2Lh) 2  (8.5a)

- kh(bh) 2K(l - Kh + ... ) (Kh - 0) (8.5b)

2 kh( bK) (Kh - o) (8.5c)

ar~d
dlwll d Ial ()l(l_ 2 Kh)e

cgl = E--=UdK - -2K
(l-e-2Kh) 

(8.6a)

- (g'h) (l - -, i ...) (Kh -40) (8.6b)

~ (g'/2.)2 (Kh -. (8.6c)

We note that (8.6b) and (8.6c) intersect at Kh - and serve as rough

approximations (with maximum errors of 20 percent) for Kh < and

*The preceding derivation is an abbreviated form of a technique used
by Lighthill, (Ref. 10) and Drazin & Howard, (Ref. 11). This tech-
nique also may be applied to the higher modes, but the results are
rather unwieldy. Moreover, the contribution of the dominant mode

to the free-surface disturbance will dominate Lhe contribut~ons of
the higher modes if (8.1a) is satisfied (see end of Sec. IX below).
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Kk > , respectively, in the subsequent, stationary-phase approxima-

tions. Substituting (8.2) into (7.7), we obtain

2 -2Kh

fh = "K(l-e (8.7)

We emphasize that (8.4)-(8.7) hold only for the dominant mode* (n = 1).

We use the approximations of (8.2) and (8.5) to obtain asymptotic

approximations to the lateral, free-surface strains, Id and Iq, on the
basis of these hypotheses: (a) the 2ontributions of the higher modes

(n ; 2) are negligible compared with that of the dominant mode (we

omit the subscript 1 with this understanding) and (b) IaI << K, for

which a sufficient condition is U >> (g'h) . The latter hypothesis

permits the approximation

y ' iK (0 << K) (8.8)
SI

in place of (7.15) and the neglect of lale -1 0y1 compared with ye-Yly l

in (7.13). Invoking these approximations, substituting (8.2) and

(8.7) into (7.13), setting z = 0, and choosing K, rather than c, as

the variable of integration (thereby regarding a as the eigenvalue

for prescribed K in the Sturm-Liouville problem), we obtain

'd ' -(D/2Tt) iK2(dry/dK)D(K)e-H+i(yx-Kly!)dK> (8.9)

0

where
-2Kh 1 -2Kd )

(l-e ) (1+e-
D(K) = (d < h) (8.10)-a

and H = h + Id-hl. (8.11)

*The oscillations of fn(z) across the thermocline do not permit
the approximation f(z) f fh for n > 1 in the integrands of (7.7)
and (8.3)
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We obtain the corresponding approximation to Tq by replacing DK2 by

k 2 (0)Q(x0)K 4 /i 3 in (8.9). The discontinuity at d = h corresponds

to the discontinuity in f'(z) at z = -h and is an intrinsic character-

istic of the thin-thermocline approximation.

Carrying out a stationary-phase approximation to (8.9), we

obtain

d - -D(2x)- (da/dK)ld2c/dK- )e-Yl+ W ')], (8.12)

where K is determined by

dCL/dK = c /U = y/x (H << jyj < (gh') Iflx). (8.13)

There is no point of stationary phase, and 1d is 0(x- ) rather than
0(x- ) as x - CO if IjY > (gh')L/U. A saddle-point, rather than a

stationary-phase, approximation must be used if jyj/H is not large;
K then must be determined by replacing Iyj by jly - iH in (8.13) and

is complex.

2 The maximum value of k di corresponds roughly to the maximum of
K2exp(-KH), that is KH ' 2, which yields a value of K that increases
from 1/h to 2/h as d increases from 0 to h and then remains at 2/d

for d > h. We may refine these estimates, at least for d < 4h,
by utilizing the asymptotic approximation (8.5c), the substitution of
which into (8.12) on the assumption that K is real (lYl >> H) yields

-d
I - D(2 x)-( g) (8.14)

We find that the maximum value of (8.14) occurs at Kh = 1.0 for d << h,

Kh = 2.1 for d = h-, and Kh = 2.25 for d > h, so that Kf = 2 provides

an adequate basis for an estimate, namely (we take D # 1)

Ildmax = 0.2Dg (x)-H- (d < 4h) (8.15)

at
Iyi/x #(qj'H)!'/4U (d < 4h). (8.16a)
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If d > 4h, we must use (8.6b) in place of (8.6c), the principal effect

of which is to replace H -9/4 by d-2h -k in (8.15) and (8.16a) by

1y1/x 'r (gO)U-1[1-(2h/d\1] (d > 4h). (8.16b) J4

The counterparts of (8.12) and (8.14) for q are

1] k2(-d)Q' (xo)(2nx)- [ 3 (da/dK) d2 /dK 2 -2

q 0

D(K)e -KH+i( x- Ii+) (8.17) -

and q I [N(-d)/Nh]2 Q(x 0 ) (U/nx) b-l(8/g)1KI/ 4 D(K)e-KH. (8.18) [q 1

The maximum value of H I occurs at KH * 11/4, where the devi&'ionq 1of D(K) from unity is small, so that

ITPqlmax = l.O[N(d)/Nh]2Q'(X)g'--4b-Hll/4x- (8.19)

at jyj/x 0 .2(g'H) /U (d < 5.5h) (8.20a) T

or jyI/x # (g'h)Au-1 -2.75(h/d)] (d > 5.5h). (8.20b)

We also note that I.

I~I [u(d)1[Q~xI U(8.21): L

We use this last result to compare the lateral surface strains I
produced by the dipole effect of a small, prolate ellipsoid of radius

a and length L and its wake on the hypothesis that the wake is (or

has the same potential energy as a wake that is) fully mixed and of

radius a; then D 'r 2a 2t/3 and Q' = ra4/4. Substituting these results

into (8.21), we obtain J

3



I (a 2,p I 8.2aId N(d 2 9U

2 [N(d)l 2 U (8.22b)

The factors a 2/bt, might lie between 10-2 and 10
-1 for a typical sub-

marine) U/cg might lie between 10 and 10 , and [N(-d)/N] is less

than unity and might be as small as 10- 2 if the submarine is well out-

side of the thermocline. It follows that, within the limitations of

the hypotheses implicit in our model, the dipole effect is likely to

dominate the wake effect. Both effects achieve their maxima if the

submarine is in the thermocine (d # h i ) and fall off rapidly with

increasing d/h.
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IX. WKB APPROXIMATION

The WKB approximation to the solution of the Sturm-Liouville prob-

lem posed by (7.5) and (7.6) may be expected to yield qualitatively

accurate results for all but the dominant mode (n = 1 below), althoujh
the implicit assumption that N2(z) is a slowly varying function ren- J
ders it quantitatively accurate only for those modes for which K bn

>> 1. It is generally inadequate for even a qualitative description

of the dominant mode of a thin thermwocline, for which K 1 b << 1 and

N 2 (z) varies rapidly near z = -h. It is consistent with the WKB

approximation to neglect the effects of both upper and lower bounda-

ries (the implicit restrictions are Knh >> 1 and Kn ID-h >, 1, re-

spectively; the violation of the former restriction is likely to be

qualitatively significant only for the dominant mode, while the latter

restriction is almost always satisfied in a real ocean). Bearing

these remarks in mind, we rewrite the Sturm-Liouville problem of (7.5)-

(7.7) in the form

L + K w(z)Jf (z) o . (9.1)-

f n(±-) = 0, (9.2)

and Wfmfndz = 8mn' (9.3)

where w(z) = w-2N2(z)-l (9.4)

is the weighting function, and K is the eigenvalue. The results• n

presented in (7.8) through (7.15) remain valid for this revised

formulation.
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We proceed on the assumptions that N2(z) satisfies (7.1) and has

only a single peak (N = Nh at z = -h) and that 1w! < Nh (waves for

which ! > Nh are not propagated); then w(z) has only two zeros, say
z and zu, such that

w(z,) W(z) = 0 (z, < -h < zU ) (9.5a)

and w(z) > 0 (z < z < z ). (9.5b)

We also define arg w2 = 0 for w > 0 and infer arg w = -T for w < 0

from the requirement .a > 0 (or, equivalently, Jw < 0) and the fa.2ts

that N'(z.) > 0 and N'(z u ) < 0. We then may pose the WKB phase inte-

gral in the forms

= P(z ) + i%(z) (z >zu)

P(z) f wdz >0 < z < (9.6)

-iQ(z) (z < z')

where z t

Q,(z) = w) (9.7a)

and z
%(z) J (-w)!dz. (9.7b)

z
U

Invoking the fact that w - -1 outside of the thermocline, we obtain

Q(z), u(z) Iz+hI (lz+hl >> b). (9.8)

The WKB solution of (9.1) and (9.2) is given by the following (we

omit the details but note that the problem is analogous to that of the

harmonic oscillator in quantum mechanics)
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C-) n-Kn%(z)} (z > zu)

fn(Z) = Cn W(Z)V-  2cosfKnP(Z).-_T' (zt, < z < zu) (9.9)

exp(-KnQt(z)) (Z < Z d

except in the neighbourhoods of z = z, and z = zu , where Airy-integral

representations must be invoked. The corresponding approximations to

the eigenvalues are given by

Kn = (n- ) (n = 1, 2, ...) . (9.10)

The normalization of (9.3) implies

C = [n+(2n-1lY']- K (9.11)

We calculate K on the basis of the parabolic approximationn

N (z) -Il(.) 2  < z < ) . (9.12)

If we assume that (9.12) is valid for all Iz-hj < s and that N2 = 0 "°

in Iz+hl > s, (7.2) implies b = 4s/3. If we assume that N2 = N2 exp
[-(z+h)2/s2 , for all z and is approximated by (9.12) in z, < z < Zu:

(7.2) implies b = Trrs.] Substituting (9.12) into (9.10), we obtain*

K = (2n-l)s- ihw ( -_ 2)-I  (w < N (9.13a)
n N(h h)

= (2n-l)s lK(k 2 -CL2)- I  (a < k) , (9.13b)

where, here and throughout this section, k k(-h).

*This result is exact if N(z) is described exactly by (9.12),

for which (9.1) is Hermite's equation, and the fn(z) are
Hermi.te functions.



We proceed on the hypothesis that

jal << IKn , (9.14)

by virtue of which we may approximate (7.15) by

Yn # j i (9.15)
n n 

M

where argvn is determined by the requirements Ryn z 0 and a < 0, and

neg.ect the term in exp(-IcLy) in (7.11) and (7.13). We also use the

approximations of (9.8) outside of the thermocline. Invoking these

approximations, substituting (9.9) into (7.13), and restricting the

range of integration to that of the propagated waves (Ial < k ; waves

for which cLtl > k are not propagated and are negligible for kx >> 1)

d -(D/2TT) AfE n R - i !-(2n-I)i 1 ljyl-iH) do1

(h, Id-hl >> s) , (9.16)

where An = (2n-l)[iT+(2n-l)- ll[sgn(h-d)]n , (9.17)

K1 is given by (9.13b), and H is given by (8.11). Introducing the

change of variable

= k sinC (9.18)

and the parameter

Pn = (2n-l)(kxs)-1l(jy-iH) (- r < argp < 0) , (9.19)

we rewrite (9.16) in the form

-(kDi2ns 2) iA £J isin23seceikxsinC(' nSeC 2C)d (9.20)

n=l 0
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The integrand of (9.20) has a saddle point at the point deter-

mined parametrically by

sinC = a/k = v n = (1-v2 )2 (1+v n) , (9.21alb)n (+ -i (n21 n

where v is a complex number. The contribution of this point dominates [
the asymptotic approximation (as kx - ) to the integral (after an
appropriate deformation of the path of integration) if In < 1 and

1l-Pn Iis not small, Carrying out the saddle-point aPproximation, we
obtain Ci

(kD/s 2 ) Adn(kx, pn)n=1 ]

3 3a ,__2 , ,- i(X -3T/4))
Av 2  2(+v 2)k( v2)- e n3/ (9.22a,b)

ndn = nnkx)-AnR n  n

3 2 1
where X = 2kxvn (i+v (9.23)

Similarly, starting from (7.14), we obtain

S- [N(-d)/Nh]2[Q'(Xo)/S4]nAqn(kX,p.n) n -

7 4

22 2 2 2 3(Xn-n/4),
Aqn = k(nkx)- (2n-) AnRv(1vn) 'l+vn) (3+vn)-e (n

A and (9.24a,b)J

The largest terms in the modal summations of (9.22) and (9.24)

are those, if any, for which In is small and, from (9.21b),

Vn = 1- (3 n) +p- + 0 I (9.25) 1

Substituting (9.25) into (9.23) and retaining only the dominant terms .1
in each of the real and imaginary parts we obtain

Xn # kx i(2n-1) 2 (kxs (Y2+H2) 3-lyj2 a kx - iXni (9.26)

62



I

Substituting (9.25) into (9.21) and (9.13b), we obtain

l/ = (2n-l)_I<sl2 n , (9.27)

so that the approximation (9.25) is consistent with the restriction

(9.14).

We use the approximations (9.25) and (9.26) to obtain the esti-

mates

9i~n -- %n(nl-l- 2 2- -X.
JAdni 2 TrL[r+(2n-l)1 (2ri-1) (kx) s (y +H ) e ni (9.28)

13 5 5 7 7

-qn 1 2 T[+(2n-1)J-1-(2n-1) (kx) s (y +H2 ) 8e Xni•
(9.29)

Assuming jyj >> H, we find that !A dnI has its maximum at

lyl/H = (2/9)(2n-l)(H/s)kx >> 1 (9.30)

and similarly for IAqn1, with 2/9 replaced by 2/49. These maxima are

fairly sharp (in IyI/H) and therefore can be achieved by only a single

mode at any given point. The corresponding maxima in lidI and 11 ql,

neglecting all modes except that for which (9.30) and its counterpart

for IAdqd are satisfied, are

3

'idimax = 0.025(2n-1l)-(kD/sH
2 ) (kx) -  (9.31)

7

and IT q Imax = 0.15(2n-i)-2 [N(-d  (kx)-2  (9.32)

Comparing these maxima with those of (8.15) and (8.19) for b 4s/3

and n = 2 (typically the most important of the higher modes), we
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conclude that the contributions of the higher modes, relative to those

of the dominant mode, to Ii I and ill I are not likely to exceed
O.05(H/s)3/2 and 0.12(s/H)3)4, respectively. The former ratio could

be larger than unity, but only for H/s such that all contributions to

Idi would be very small; the latter ratio is certainly small--typi,-

cally between i0 - 1 and 10- .
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APPENDIX TO ANALYSIS B

STATIONARY-PHASE APPROXIMATIONS

We require stationary-phase approximations to integrals 
of the

form
CO 0)

I= (2),%-2 f , (Al)

where X =-+ 8yz+ (k2- 2 )cL 2 +8 2 )2z, (A2)

z > 0, and R = (x
2 + y2 + z) .

Considering first the 8-integration, we find that X has 
a point

of stationary phase at

B s ( -) = 22Iy(k' 2-a r2 ) , (A3)

at which point

X(as(ar)) = ax + (k2 z2 -a2r2) sgnm , (A4)

and 3
2 2 ,21._ 2 2 2,

X (az)-2(k2 - I (k z'-O2 r ) sgna (AS)

Carrying out the stationary-phase approximation to the 0-integral,

we obtain

3 co

I- (2r)- 2f(fX8') 8 (a)exp[iX(a,ss(a)) + 1.insgnada • (A6)
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The integral in (A6) hos two points of stationary phase at

= = kxz/rR = ± kcos0siny (A7)

2 2and 6 = 8 s =- - Yx/r = : kcos ecscesinpcosy (M)

if x > 0 and no points of stationary phase if x < 0; R, e and y are
polar coordinates, defined by (6.9) above. We also obtain

X( s, $) = kzR/r = i kRsinq (A9)

X A =T R3 krz , (Al0)

and X = ± (r 7R/kx 2z)(y 2R+z2r2- , (All)

where the upper and lower signs correspond to a s < 0. Assuming that

f(-O., 5) is the complex conjugate of f(a, 0), we find that the con-

tributions of the two points to the stationary-phase approximation to

I are complex conjugates, with the end result

(kxz/nrR2)(y2R 2+z2r 2)[f(s ikzRr (x > 0) (Al2a)

2 2 2 eikRsincp (>o.

(k/i-R)Cot~sincp(cos cH-sin 8 sin 0)2[f(as s (x > 0).e

(Al2b)

Comparing (6.7) and the corresponding representations of qd' '
and qq to (AI), we obtainA

f(O¢d-%,*d ] =D[-U(a 2 +B 2 )-(k 2_a2) , sgnz] (A13)

f[¢qq Al ik 2 O'MM'( 2 +52)(k 2-a 2) , O 2( +B )sgnz). (AI4)
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1. Substituting (A13) and (A14) into (Al2b), we obtain

[¢d,0 d N (kD/2nR)[U,cotsiny](cos2 2 +2n)

"cos(kRsincp) (kR - c, 0 < e < n) (A5)

and foq,#q) (k2Ql/2rR){-Ucscy, cote]sec~csc28

3
-cCos2y4sin 2 sin Tj sin(kRsinC) (kR - , 0 < e < rr)

(A16)
Substituting (AIS) and (AI6) into (2.4b), we obtain (6.10) and (6.11).

-I

4
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We wish to study the effects on rather small surface waves, and

sCecifically on their height and slope, of the existence of internal

waves in the region of ocean through which the surface waves are mov-

ing. Surface waves damp exponentially in depth in a distance compara-
ble to their wavelength, so for small surface waves, we can assume that

the dimensions of the internal wave are very large compared to those

of the surface waves, and therefore the internal wave can be well rep-

resented by a horizontal depth independent current. We describe this
with a velocity field U(xy,t), which is a function only of time, of

the horizontal coordinates x, y, and with no vertical component. Fur-

thermore, we may expect the times and horizontal distances over which

U varies to be much greater than those over which the surface waves of

-- interest vary.

We shall ignore viscous and other dissipative effects for the sur-

* face waves; that is, w? shall asnume that damping is unimportant over

horizontal distances comparable to the region occupied by the internal

wave. Typically, we shall be interested in dimensions of surface waves

which dissipate in distances considerably longer than that. On the

other hand, since the size of the effects we are interested in will be

characterized by the parameter U/c , where cg is the group velocity of

the surface wave, we are also most interested in slow (i.e., short

wavelength) gravity waves. Yet these are also the waves that dissipate

most quickly. We must therefore strike a balance between the two re-

quirements.

Finally, we shall assume incompressible irrotational flow in the

region of ocean occupied by the surface waves. irrotational flow is

described by a velocity potential 0 which satisfies

V20 = 0 (1)
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There are three boundary conditions on the solution to the equation:

(1) At the surface, the vertical velocity of the fluid ao/6z is the
same as the time derivative of the height of the surface h(x,y,t), so

that

dh 6h + (VO . v)h = 0 (2)
dt Th -r -

and Bernoullits equation relates h to the derivatives of 0:

ao )2 -2
= -gh (3)

(2) The second boundary condition is the assumption that at large depths

u approaches the imposed velocity U

u(x,y,a.U) , (x,y,t)
Z --

or if § is the velocity potential for U so that

O(x)y)z~t). § (x y~t)
z -4 -CO

(3) The final boundary condition is the initial condition that for

times far in the past the imposed flow vanishes and the wave approaches

a freely propagating wave 0o0

t -00

(4)
¢(x,y,t) 0

t _

The effect of the imposed flow on the propagation of surface waves

is expected to be small since the velocity of the surface current is,
in general, much smaller than that of the surface wave in open sea

conditions. The hydrodynamic equations adumbrated above may therefore
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be expanded in powers of U and only the linear term retained. We

jbegin by writing

0 = + ¢o + 01 (5)

where 0 is the velocity potential the initial wave would have had in
0

the absence of the surface current and 01 is the correction due to its

presence.

-, The equations governing 01 are obtained by substituting Eq. (5)
-in Eqs. (1) thivugh (4) and retaining only terms linear in 01 and .

Noting that and 00 separately satisfy Eqs. (1) through (4), we have

S2 1 = 0 (6)

T with the boundary conditions

0 (7)

. l(X)y, z~t) •---- 0 (8)
Z - -co

and

+ g  + 2-. [(Vi + VO1 1 .c ,I + (V0l + V). v(Vo) 2

hAs a consequence of the small onplitude assumption, terms which are
quadratic in 0 0are negligible in comparison with those linear in 0 0.
Further, since 0 2 s a small correction to 0 , terms like 0100 may be0 0neglected in comparison with 0lV

I- The boundary condition at the surface then becomes
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2
+ - V . vo -2- [ vo] (9)r at 0 0

The problem is now to solve Eq. (6) with the boundary conditions (7)

to (9). The general solution of Laplace's equation (Eq. (6)) which

satisfies the boundary condition (8) may be written

S 2k dw i(k.x - wt) kz1( , z~t ) = 2 e)e al(k'w)

J (2n)

Since 0 , the unperturbed flow, also satisfies Eqs. (6) and (8), it
0

has a similar Fourier decomposition with Fourier transform a (k,w).
0' '

Here and in the following, x will mean a two-dimensional vector in

the xy plane. Equation (9) then becomes

al (k,w)  2iw F(k,w)
gk - w

where F(k,w) is the F-irier transform of (U- VO )z=0 given in terms

of a and the Fourier transform of U by

F(k,w) = i q d, U(k-, w-v). q ao(,q,v) (10)J (2rr) 3

This solves the problem of determining the perturbation 01 to a

small amplitude surface wave 0 caused by an arbitrary surface cur-
0

rent U. The quantity of chief interest, however, is not the velocity

potential 0 but rather the height h. If we write 6h for the change

in height caused by the surface current, then we have from Eq. (3)

8h :- L + U " VO

Here we have retained only terms linear in U, have neglected terms in

02, 00l, and have used the fact that there is no vertical displace-

ment from the velccity potential in accordance with assumptions (1)

through (4). For !0,/at we have
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1 d2k dw 2w- i(kx wt)
-(71 F(k,w) ei -

d (2 k) egk - w

(dd 2kdw 2+ k i(k'x -wt)-2 + FQS,w) e
f (2T) [g k -w 2

d-U V 2 k dw gk F(k,w) i~- t
2 0+ 2 e x- )

0 f (217) 3 gk- w2

r Thus for 6h we have

h 700 + f d 2 k dw 2k i(k 'x - wt)

g J(2TT) 3  w2 - gk F~w

or in terms of the Fourier transforms of 0 and U (cf. Eq. (10))

Uh t v d 2 dk dw 2k (d 2q dv U !-q, w- v)

~~6h(x,t) - " e ° + ij - (-, v

9" f (2) 3  w2 - gkd (2u) 3

a 0  v) i(kx - wt)0o( - v) Z ~ (i

In general, the nonlinear effects on the unperturbed wave will
be of the order of magnitude

*(70) 
2 / hma

typically a number like 1/50. These effects are therefore large com-

pared with the effect of the surface current which might optimisti-

cally be of the order of several percent. For a calculation of the

total wave, these nonlinear effects cannot be neglected. If, however,

one is, as here, mainly interested in the change in the wave structure

due to the surface current as calculated from Eq. (11), then the change

arising from the linear part of the wave will be larger by the factor
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(hmax/2rX) than that coming from the nonlinear correction. To calcu-

late 6h from Eq. (31), we can therefore replace a with the value

appropriate for a plane wave with wave vector k, frequency w = (g ko) ,

and amplitude A:

ao(k,w) = (2n)3 A 6 (2)(k-h) 6(w-wo)

One finds, then, that

U V0° +0 id Adw 2__ ik-ZU(k-kw-wO) •ke k ' - wt

6h(x,t) + gi (2U 5 - k- k W- k eo -o-
9 f (2TO) 3  w 2 gk '0 0 0

(12)

Writing

U(%-ko' W-wo) = e i ( W- WO0) t f ( t') dr' ,o

the w integration can be performed by evaluating
+C0

dw e-iW(t-t')
2 w 2 - gk

_C0

In order that 01 vanish for large negative times the poles in

the denominator of the integrand in Eq. (13) must be displaced slightly

into the lower-half-complex-w-plane. One then has

0 t <t'I(t-t.) = ei t-t')_e~ (t-t')]t

2,,g t >

Making these substitutions in Eq. (12) and displacing the k integra-

tion by an amount k , one has10
t

k i U(t) tk--
6h(x,t) = i k " + .1 f J(x,t,t') dt' A e ^o o
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whe re

~J(dxtt') = 2- ok " e tt ) k U(k,t ) ei k' x

S(t-t(t-t'

Now, the wavelength of the internal wave is much longer than that of

the surface wave and U(kt) will be sharply peaked about k=O. We may

therefore expand Tk+koj about k=O.

-. 4gI + = k ( l+ - r -+ *)

00., Writing = (g/ko) for the group velocity of the surface wave,

we have

J(x,t,t') + fd2R [w + c • k *U(kt')
f (2Tr) 2 0 -19~'

ik .x - cg(t-tI)] 2iw (t-t') ik • x+ c (t-t')]
[e 9 -e e .

Since the surface current varies slowly in time as well as space

[assumption (4)], the second term will be small compared to the first.

Therefore

J(xt,t') = o- i c . V] fd 2  k U(),t') e • c
0 j1 f 2n 2-

= [W - i c . v] k - U(x - cg(t-tc'), t')

If we denote the height of the unperturbed wave by h0 (4,t), so tat
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i A w i(k x t)
ho(xt) = 0 0 e

then we may write

A t "
6h o - + f dt' C_ i - oux-c(t-t'), t'].
0 g_CO

The height of a wave can change at a given point and at a given time

not only because the amplitude of the wave changes, but also because

the phase changes. Since it is the change in amplitude which is of

chief interest as far as the identifical-ion of the current is con-

cerned, it is important to separate these two effects.

The general wave can be written

h(x,t) = A(x,t) eiX(x't)

where A and X are real. For small 8A, 6X perturbations away from un-

perturbed values A and X0 , we have

6h 6A

0 0

Thus

A t

SA p 6h s o (x't) A A A
=Re (-)- ... . • o. U[x-c (t-t'), t']dt'

g .

t
6h f ,)and 6X = Im ( --) --o •f ( -Cg(t-t'), t) dt"

The first term in the amplitude enhancement is an instantaneous effect

and very small. The second tem is a time integrated effect and de-

pends on the gradient of the flow.
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I.

In addition to the change in amplitude, the change in wavelength,

frequency, and mean square slope are also of interest. The change in

the wave number 6) and the change in the frequency 6w may be obtained

from the change in phase 6X through the relations

6k= V(6X) , 6w = -(X)/t

2. 2
The mean square slope in m is given by the time average of (Vh)

The time average is taken over a period of the surface wave, a time

which is short compared with the characteristic variation time of the

surface current. In this case the time average may be expressed in

terms of the complex waves by

m2 = q' Vh * .

In terms of the change in amplitude and phase, one can then easily

find for the change in mean square slope

6m2 (6A k_ = + 2 (14)m o k --

0 0

or, since

k • V 6X k • 6k k 6k,

this can be written as

6m2  = 2 6(kA)

in 0 0
0

Inserting expressions for 6X and 6A/A into Eq. (14), one has, finally,

A t
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In order to investigate the magnitude of possible enhancements

of amplitude and slcpe, let us assume that the surface flow U has the

form of a wave propagating with a phase velocity C in a direction

specified by a unit vector n:

Ut(,t) = U(. x -Ct)

In this case we have

tkA -. U(,t)t
= 2 c - ") f dt'. "[n •'k-c t)+(n •c -C)t']

and a similar expression for the mean square slope change. Suppose

now we follow a crest in the internal wave which for simplicity we

assume to occur when the phase of U vanishes. Then is related to

t by

x=Ctn

and we have

A 2 (k k [c , n )(k--t')] dt',.
g _=

where U' denotes the derivative of U with respect to its argument.

Surface waves which have these components of the group velocity

in the direction of propagation of the internal wave equal to the

internal wavests phase velocity may experience a large enhancement

from the second term. For these waves

A
c -n=C

and the enhancements in slope and amplitude are
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2 .U(O)
6 m (AgO)

!9

S and

8A _ o * U ) " A) ( o " U(O)) T

2 2c 0A ')( 0 ()T

where T is the time that the surface and internal waves have been in--

teracting. If T is long enough this time-integrated effect will be
appreciable and will dominate the instantaneous first term.

- . As a particular example, let us take for U a sine wave with wave
number K, frequency 0, and the surface current in the direction of

propagation.

U = u sin (K• x -f t)

. ^A m22
If we denote by e the angle between K and t, then 6A/A and Sm /m
may be written

6m2  U Coos 2 [sin T K(c cos -C)]

c 0 T _3(TKU)cos K(c cos -c)
m g L -

and (15)

6' A U 0Cos 0 sn TK(c 9cos 0 -C)
--- = 2c C (TKUo) cos

The most favorable case is for waves traveling in the same direction

as the internal waves with cg = C. For these waves, the dominant

effect is

-. A Sm2 _

6A- - TKUo  6- 3 TKII
m
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For waves which travel at an angle with respect to the internal wave
but have their component of c in the internal wave lirection equalg

to C, there is the same enhancement decreased by a factor cos2e.

Waves whose velocity component in the direction of internal wave

propagation is greater or less than C will eventually pull ahead or

lag behind the internal wave. This is indicated mathematically by the

decrease of the bracketed factor in Eq. (15) for large T if cg • cos 0
C.

There will thus be a strong time-integrated amplitude and slope

enhancement for the special class of waves which ride a2ong with the

internal wave. This effect is proportional to the gradient of the

surface current and to the time of interaction. This time, in turn,

will at best be the minimum of the characteristic times of decrease

of the internal wave and the surface wave due to dissipative effects.

If the lesser of these times is long enough, there may be an appreci-

able enhancement.

82

r

:1



SUPPORTING ANALYSIS D

RADAR SCATTERING FROM THE OCEAN SURFACE

Curtis Callan
Harvard University

Roger Dashen
Institute for Advanced Study

83



I

r
r

I. INTRODUCTION

We shall be concerned with the scattering of electromagnetic

radiation from the ocean surface, with emphasis on frequencies in the

microwave region. In order to simplify our calculations we have cho-

sen to study a model in which the electromagnetic wave is taken to be

a scalar field. We believe that such a model brings out all the

essential physical phenomena involved in the scattering process, ex-

cept possibly in scattering from the sea at low angles of elevation.

When the scattering occurs near Brewster's angle, the scattering of

vertically polarized waves should be strongly suppressed, a phenomenon

which our scalar model cannot reproduce. In any case our approxima-

tion scheme for studying scalar waves breaks down at small angles be-

cause of the phenomena of shadowing and multiple reflection.

The actual extension of the theory presented here to the full

problem of vector electromagnetic waves is perfectly straightforward.

The resulting formulas for polarization, etc. will be given in a fu-

ture, more detailed report. In the following discussion we also

ignore Doppler effects arising from the fact that the ocean surface

is constantly in motion. These effects, which are not believed to be

important in the present context, will also be treated in the later

report.
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II. SCATTERING FROM THE OCEAN SURFACE

At any instant the air-water interface is given by the surface

z = h(xy), the origin being so chosen that if we average over ma['

instants, (h(x,y)) = 0. We assume that the illuminating radar pulse

is of such a short duration that during the time it is actually inci-

dent on the sea surface, h(xy) changes Ly a negligible amount. Since

radar pulses are, typically, microseconds long, this approximation

should be excellent. Our problem, then, divides into two parts: (a)

given a plane electromagnetic wave, of wave vector k, incident on a

fixed sea surface z = h(x,y), find the wave scattered in any direction

and (b) find the average power scattered in any direction where the

average is taken over many values of h(xy) corresponding either to

many different times or many illuminated patches on the sea surface.

Since we are neglecting instantaneous motions of the sea surface, we

can say nothing about possible doppler shifting of the frequency of

the scattered wave.

For frequencies in the microwave region, the index of refraction

of sea water is well represented by

n = n (l + ia/wn0 2 )
0 ~00

where no = 80, a = 3mhos/meter, and E is the dielectric constant ofo 270o
vacuum. The quantity a/wn2 E = 10 /v describes the relative impor-0

tance of conduction and displacement currents in the equation of mo-

tion. At microwave frequencies, v 2 10 cps, and the imaginary part

of the index of refraction is totally negligible. Therefore we may

safely think of our prob].em as that of computing the scattering of

electromagnetic waves from the interface between two purely dielectric

media with indices of refraction 1 and 80 respectively.
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Boundary value problems of this kind can, unfortunptely, be

r solved exactly only if the boundary surface is quite simple: plane,

elliptic, etc. Therefore we are forced to resort to approximate

j methods. In general, there are two sorts of boundary which admit

simple approximate solutions. In the first case, suppose that the

rradius of curvature of the boundary surface is everywhere large com-
pared to the wavelength of the incident radiation. We can then apply

geometrical optics to compute the intensity of scattered radiation.

In the second case, suppose that the deviation, A, of the surface

from one which has a known solution is everywhere small compared to

the radar wave length X. Then, by a simple form of perturbation the-
ory, the scattering can be computed correct to order A/X (we will

shortly show how this is done). Therefore if the sea surface h(x,y)

can be written as h = h + hl, where hl is everywhere small compared

to X, a-d the radius of curvature of h0 is everywhere large compared

to X, we can combine the above two approximation methods to get a

decent solution. Whether or not this can be done clearly depends on

the detailed nature o:' t-he sea surface.

At any instant the sea surface, h(x), can be written as a Fourier

integral h( ) =f d a (k) eik ' . We can cbviously make the decompo-

sition h=h ° + h where

h0 =j dR a(R) e

hI =f drt a(R) ei .£

k>kc

and kc is for the moment arbitrary. We can then show that if kc is
properly chosen the surface h has a mean radius of curvature which

is large compared with the radar wavelength, while the mean magnitude

of h1 is everywhere small compared to the radar wavelength. Since the

sea surface is a random process we can really talk only about the
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mean valuec of the coefficients a(). All such information is con-

tained in the correlation function

p(X) = (h(x)h(O).

=fdk A(k) eii' 'K

which has been determined experimentally to have the form

P(R) d J i~e'
k1

C =2 x 0-3 ._

The cutoff k1 corresponds to the gravity waves moving with the wind II'
velocity and the cutoff k corresponds to very short (say, 3.mm) cap-

illary waves. The corresponding functions for the surfaces hO and h,

are then
kc

Th en qae egt fth ufe hTite

o(R) (h hoX)ho(0)) C fdr 1, e

k k.,

2k 2- __ ,,H = P () = <hldk,)hl(0) = -fd x ikc

k

ce

k2

H2 = O ( ) h,) (0)) dkk C f2k2 =R ex03 -

kk

and the mean square radius of curvature, R, of the surface h is

k0
2o

given by "
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2 2 2
[ l/R2 = ('72) po(x)

k

k1

2_ 2 .3k2
= PC(< 0-kl) = 2xl0 k

- We should like to satisfy simultaneously the conditions H/X << 1 and

I iX/R << 1, where X is the radar wavelength. According to the above

equations H/X = 0.007X /, and X/R = 0.29 X/X , so that if we choose
C c

X -a 6X, we have H/\ -! X/R- 0.05. With such small values for the

expansion parameters, we feel safe in computing the scattering from

the surface ho by geometrical optics and in computing the extra effect

of the surface h1 by perturbation theory. We emphasize that our

ability to make both expansion parameters small simultaneously is a

stroke of good luck depending on the detailed statistical structure

of ocean waves. It probably is not possible for other sorts of ran-

dom surface.

We now have to show how this approximate calculation is carried

out in detail. In order to demonstrate the ideas involved we study

the scattering of a plane scalar wave from a surface h(x,y) which can

be decomposed into two surfaces h and h in the manner just described.
Once we have solved this problem it is not hard to fold in the com-

plications due to the vector nature of the electromagnetic field.

In a medium of varying dielectric constant n(R), we assume the

I. wave function * to satisfy

+ k2 n(R)] *(R) = 0, k = w/c.

This means that if n(R) has a discontinuity on a surface, then * and

its normal derivative must be continuous across that surface. In the
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case at hand, n(R) takes on either of two constant values 1, or n,

the dielectric constant of seawater, jumping from one value to the

other at the surface z = h(xy). We then want to find the solution

to this equation when a unit amplitude plane wave, in = e ,

k = k(cose, 0, -sin8) i3 incident on the sea surface from above. (See

Fig. 1).

Corresponding to tiie division of the surface z = h(x,y) into a

part, h (x,y), with small curvature, and a part with small amplitude,
0

hl(x,y), we can write n(x) = n(x) M+ n(X). no(x) takes on the values

n and 1 and describes the air-sea interface z = h0 (x,y). n1(x) takes

on the values 0, ±(n-l) and is nonzero only in a small region around

the surface z = h (x,y) as is described in Fig- 2.

Let us suppose that the solution to the scattering problem for

the surface z = h (x,y) is known and let it be called o . Let us also

define 64 by = o+6* where 4 is the desired solution for the surface
z = (h0 + hI) (x,y). We can combine the two equations

rV2 2"
L + k no()] o = 0

[V2 + k2 (no ()+n lC))] (0 +6) = 0

to give

L + k2 n (x)] 64=-k nl(X)
01

This equation, in turn, can be put into integral form if we introduce

the Greens function, G (,X) which is a solution of

2 2(V + k n (X)) G o(x,x') = 6(x-x')

This allows us to write

6*(x)= -k 2 dx Go(Xx) n,(x) (x



Since n1 is nonzero only in a volume which goes to zero as hI goes to

zero, 64 is of order h To this order therefore, we can replace 4,

within the integral, by 4o"

6(x) = -k2f dX' Go(X,')n

To the same order, we can actually replace the volume integral
by a surface integral over the surface z = h (x,y). The equations

of motion satisfied by 4o and G imply that at this boundary surface,

both these functions and their normal derivatives are continuous.
Therefore the effect on the integral of their variation over the small
volume in which n1 is nonzero is higher than first order in h_. We

can therefore write

iI.

6*(M) = -k2 (n-1)fdS GO0,''(S)ix(S)) 4 (i'(S))

where the surface integral is taken over z = h (x,y), '(S) is the

three-dimensional position vector of the element of surface, and hl

is the normal distance between the surface z = h0 and z = ho+hI
(taken positive or negativE according as z = ho+h1 lies above or be-

low z = h ). Finally, it is convenient to convert this into an inte-

gral over the plane surface z = 0, taking p = (x,y) to be the position

vector in that surface

= -k2 (n-1)f d h() Go(ix( )) *o(4(P)),

where x(p) = (p, ho ()) and h is exactly the quantity earlier called

hl, the vertical distance between the two surfaces z = h0 and z =

ho+hI. The geometry of the transformation is best explained by Fig.
3. Therefore, if we know 4 0 and G on the surface z = h0 , we can
calculate 6q, correct to order hI.

According to our assumption, the radius of curvature of ho is

everywhere large compared to the wavelength of the illuminating radi-
ation, so that scattering can safely be computed via geometrical optics.
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In particular, we need to know ° on the surface z = ho. Geometrical

optics means that, if we neglect multiple scattering and shadowing,

the field at a point on the surface can be computed by replacing the

curved surface by its local tangent plane and imagining the given

* incident wave to be scattering from it. It is easy to show that if

the incident wave is e , the total field at a plane boundary be-

tween regions with dielectric constants n and 1 is

2coscL

coSO. + /n-sin a

AA

where cos n = ni n being the unit normal to the boundary.

We also need to know Go (X,') with R' on the surface. From the
equation satisfied by G0, it is clear that G 0-(x,') represents the

total field generated at R' by placing a unit source at x, given the

boundary specified by no (R). If x' is near the surface, and if we ne-
glect multiple scattering and shadowing, the geometrical optics approx-

imation to G is gotten by replacing the curved surface by its local
0

tangent plane. The solution for G in the presence of a plane boundary
0

* is well known. If we set x = 'R, take R on the boundary, and let

R-, it becomes

-ikk-2cos('~~~G ( k 'R , x ) - e 2 o -

cos ' + - sin2a

a' being the angle between k' and the local surf e normal.

We now can write down our expression for the field 6*(x) when R

is far away from the surface:

A k2(n-!) k -R6*(k'R) dD hl( )T(a( ))T(a (B .e

where

T(c) = 2cosa/(csdt + jn-s
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We are particularly interested in the field scattered back along the
I1  A

direction of the incident beam, in which case k -k, and

A 'k2 (n-~ 2ik-(-P)
R6*(-kR) = k(n-)j o h(P) T -

It turns out to be convenient, for purposes of computing the

average backscattered power, to recast the expression for 6* in a

slightly differenc form. Fi.rst of all, we note that the reflection
coefficient is a function of cosa = -n-k where n is the local surface

A
normal. In turn, n is a simple fvnction of V-h (i), so that we can

P 0
write T = T(V-h (T)). If we introduce the Fourier decomposition of

i§1 hl(5) , 1(T), we then have

A ( k 2 (n-1 I( ) T2  ho P e [2k+Z)'p-2ksinG ho G)]
8' (-kR) = -4(-l dT E i1Q)fdpT2(V ho()e

Since the surface h ( ) is one which satisfies "he criteria of geo-

metric optics, we can evaluate the integral over p by the method of

staionary phase. This means that the only important contributions

r come from those points 5 where

V- ((2k47Z).p -2ksin8 ho ()) = 0P0

r- h (P) = (2k+Z)/2ksinG.

Therefore we have

6(A k 2 (n-a.) [ 2,2R+Y
8*(kR) k2 (-= f A h (Z) T kie x1

f d5 exP[i((2k+-t)'p-2ksineh )].

The virtue of this expression is that the arguments of T no longer

depend on the specific surface, so that the averaging process is

simplified.
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To compute the backscattered power we need (I*° + 64 12), wherest 0

40 is the backscattered field from the surface h0 , and the average is

over the various possible forms of the sea surface. Since different
Fourier coefficients of the sea surface are statistically independent,

and since 64 depends on hI while 4 does not, the cross terms of the
s 1 0

form 4oS64* vanish upon taking the average. Therefore, the average
backscattered power is the sum of two terms, (1*o12 and (16*12),

which we shall compute separately.

It is convenient to define a scattering cross-section in order

to eliminate the distance of the observation point from the sea surface.
The energy density at any point is just H 2 . If a finite patch of

sea surface, of area A, is illuminated and we observe at x = k'R, R
very large, then all the energy at R is flowing in the direction k'.

If the antenna subtends a solid angle 60, the total received power is

then R412R2 &) and the received power per unit illuminated area is

1*12 R2 AQ/A. We shall define the quantity a = 142R2/A, so that an-

tenna power is a A AQf.

Let us first compute aI = (II)R2/A. If we make the standard

assumptions about the Gaussian nature of the sea surface, and make the

definitions

(h0( )ho(0)) = Co(R)

( )*())= l(t) 6 (z-V')

we find that

(k2(r.-l)/41) 2fd l (J) T4 ( 2+

f di exp[i(2+Z).-i-(2ksinO) 2(Co(0)-C0 (r))]
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where we should now remember that when we write k we mean (k ,ky)

I (kcosO,0). The largest contribution to the 
integral over r comes in

the neighborhood of i--p0 where we write

Co (r) = h2(l- a r 2+ •." )

I
so that

fdi exp~i(2R1QI4>r-(2ksine)(C o(O)_Co(r))3

f di exp[i(2i+Z)
"- (2ksine) 2 . r

2] =

_[___i_) cxP[-(2k+t)2/4cL(2khsin)23 = f(2R+Z)

(2khsine)

We note that in the limit a -
0 f(2k+Z) - (2r) 2 6 (2k+1). In fact

ai is rather small:
"2 _(/)2o( dKk j lgek/!

h2 L = -(./2)V PO() = (C/2) f d/2 = o(k/k

K

2x10_ log. (x /aX
x wind radar

where )wnd is the wavelength 
of those ocean waves whose velocity

equals the wind velocity. For a 10 m/s wind and a 10 cm radar 
wave-

length, we have h
2 = 0.9x10 -2  This means that in terms of the 

dimen-

sionless variable 12+IRi / 2ksin8 the width of f is about 
0.2 in a

typical situation. This width decreases slowly with 
wind velocity.

If we ignore the width of f, 
replacing it with a delta function,

we have the simple formula

k 4( T (0) jl -2 ).
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If we include the effect of the wind broadening of f we see that a,1
is proportional to the average value of T4 I( ) over a circle of radius

0.4ksinO in t-space. centered about Z = -2R = (-2kcosG,0). In the

undistrubed ocean we know that pi(.7,) = 2xl0-3 -"4 /7. and therefore could ._

actually perform the average, if necessary. If we evaluate the zero-

width approximation to a, in the limit n- (appropriate for the sea

surface since n = 80), we get

for the backscattering cross-section from the undisturbed sea.

We now must compute ao = (*I0 12 ,) R2/A. Since o is the field

generated by that part of the sea surface for which the approximations

of geometrical optics are correct we can adopt the classical results

for scattering light from a Gaussianly rou:rh surface:

a = (h a (2sine)4 ) -exp(-cot 28/h2)

for backscattering. We note that ao falls off exponentially as 0
decreases from Tr/2. In fact we can easily see that for e 4 800, 01

dominates ao , while for e b 800 the reverse is true.

At this point we may reasonably summarize our results: We have

found two basic regimes in radar backscattering; one occurs when the

angle of elevation is large, nearly 900, the other occurs for moder-

ate elevation angles. In the first case, the backscattering cross-

section is a function of oh2 , while in the other it is determined by

the ocean wave power spectrum, at some appropriate wave number.

The quantity dh2 , is just the mean square slope of the ocean waves,

which in turn is an integral over the complete wave power spectrL,.

Therefore, the difference between the two regimes is that in one case

we measure p' at a point in wave number space while in the other we

measure what amounts to an average of p, over all wave number space.

This distinction will turn out to be most important in the applications.
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Finally, we would like to point out that the scattering of polar-
f ized radiation from the sea surface may be calculated by much the same

methods, although the foi.mulas are much more complicated. We shallf[ refrain from writing them down here since nothing essentially new in
the physics of radar backscattering is introduced.

i9-

I-
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III. THE EFFECT OF INTERNAL WAVES ON RADAR BACKSCATTERING

As far as the applications considered in this report are con-

cerned, we need to know the effect of an internal wave, over and above

the random background, on the radar return from the sea surface. The

ocean wave heights are in general described by the power spectrum

FP() where

(h()h()> =JdR (R) e i k x

with F(R) = 2xlO-- for the standard wind-generated sea. Hartle

and Zachariasen have shown that if an internal wave of phase velocity

C, wave length L, and maximum surface water velocity V0 is present,

then the power spectrum is changed by

T 2n V° cos 20 sin(2Tr TL-1 (C coso-C)

F(F) L27 TL 1 (C cos-C)

where 0 is the angle between K and the direction of propagation of the

internal wave, C. = , is the group velocity of the surface waves

with wave number k, and T - the time during which these same surface

waves have been acted on by the internal wave. It is convenient to

introduce J = TC/L, which is just T measured in internal wave periods,

and e = V /C so that

K 2  sin(2vJ(C cosO/C-l))
'7k) 2nfl'(C cos0/C-l)F(K)

In practical cases, e turns out to be very small. We note that for

small X, 6F/F is uniformly distributed over k-space, while for J >> 1,
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6F/F is very sharply concentrated around the curve C coso = C. This
g

turns out to have a profound effect on the size of the radar return

for different values of 3.

We recall that if the angle of elevation, e, of the radar beam

from the horizontal is not too large, the backscattered power is pro-

portional to the average of F(R) over a circle in R-space centered atHo = (-2k radcos,0) and with radius akradar, where a depends on wind

velocity but might typically be 0.1. Let us suppose that we have

cleverly chosen kradar and e so that ko lies on the curve Cg cos = C.

We now want to compute the ratio 6P/P where P is the radar return from

the undisturbed ocean and P+6P is the radar return from the ocean in

the presence an internal wave. Let Q (IR-K 0 I) be 1 for R-R 0I <

akradar and zero otherwise. Then

= fd 6 F(R) 0 (k-kol)
f-= dR P(R) 0 (1 R-Ro)

There are two interesting regimes in which we want to calculate

this ratio. First of all, if 2n3(C cos¢/C-l) is small through the

region where 0 is non-zero, we have 6F = -c 2irgcos 2F and

SP .

&-P - 2U - cos 0

On the other hand, if 3 is very large, 6F/F - -encos 206(C cosO/C-l).

With our assumption that Ro is centered on the curve Cg cos = C, we
have

6P _ 2c cos20
a

Because a is small, this ratio can easily be as much as 10e.
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IV. STATISTICAL CONSIDERATIONS

Thus far, we have shown how to calculate the backscattered power

averaged over a statistical ensemble of ocean surfaces. The question

of just what "averaged over an ensemble" means in terms of physical

measurements remains. This will be our next topic.

One way of pexoforming an average is to look repeatedly at dif-

ferent pieces of the ocean surface which are far enough apart to be

statistically independent. The minimum distance between two such

pieces is detenmined, of course, by the correlation length of those

properties of the ocean surface surface which are important in the

scattering process. Since the specular part of the scattering cross-

section depends only on the mean square slope, the correlation length

relevant for specular reflections is clearly that for slopes, which

turns out to be some tens of centimeters. For Bragg scattering (scat-

tering from waves of a definite wavelength, the dominant process in
backscattering at moderate elevation angles) the high-frequency part,

h of the elevation determines the scattering. To find the correla-

tion length relevant for Bragg scattering we must, therefore, study

the correlation function

Pl(-) = (hl()hl) =2x10 3  k4ei.(xy)
1TT

kc

Because it contains a factor k 4 , the integral on the right is rapidly

convergent and receives most of its contribution from the region

kc : k: 2kc . When I( -y)I is small compared to Xc = 2k-l' the ex-

ponential is essentially constant over this region and p(i-') is of

order 2xl0-k- 2. However, if IR-yJ is large compared to Xc, the ex-

ponential factor oscillates rapidly and the integralis "ery small.
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Thus, we may take the correlation length for Bragg scattering to be

something like Xc which, as pointed out above, will be a few radar

wavelengths.

Actually, the above correlation lengths are so small that they

are of little interest except in very special cases. To see this we

have to understand what happens when a radar looks at the ocean surface.
gt

Suppose a radar illuminates an area A of the ocean surface. Re-

ferring to the above numbers, we see that in general A will be very

large compared to the relevant coherence length squared. Imagine now,

dividing A into patches whose linear dimension is of the order of a

coherence length. We can write the backscattered wave as Z i where

*1 is that part of the backscattered wave which comes from the i-th

patch. Then setting a = a. eio, we have

P a i aaj ei(¢i-¢j )

for the returned power. If we now average P over an ensemble of
statisically independent areas A, the averaged power is

(P) = ( a = (a 2
, ii i

which follows from the fact that the phases eiOi are random.

There are now two questions: (i) What do we mean by independent

areas? and (ii) How many areas are needed to determine (P) to a given

accuracy? The answer to the first question is almost trivial. In

order that the phases eiOi be uncorrelated, the two areas must be non-

overlapping. We are assuming that the time difference between mea-

surements is less than the decorrelation time of the phases. To

anser the second question, we need the variance of P. Here we appeal

to the well-known fact that for a sxn of terms with random phases,

such as in the last equation, the variance is always oF the same o-der

as the square of the average, i.e.,
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A/((_(P>)2> = (P> .~

This means, of course, that co measure (P) to, say, one part in ten,
we need one hundred separate areas.

Notice that the above conclusions are independent of the size of

the area illuminated by the radar (so long as its linear dimensions

are large compared to the correlation length). Thus, contrary to onets

first impression, the accuracy of a measurement of P does not improve

as the size of A increases. Also, it is clear that the magnitude of

the small correlation lengths does not enter in a critical w~y.

This perhaps surprising situation arises because a radar is a

coherent source of radiation. Suppose, on the contrary, that the source
of radiation were i.ncoherent. If this were the case, the equation

given on the previous page for the backscattered power should be re-

placed by

.i[( (¢4"¢i)-( (¢+0)]
P = a eaia3

i,j

where 0! is the phase of the incident radiation, assumed to vary rap-

idly with time and index i (this is to incorporate the assumption that

the incident radiation is incoherent). Averaging over a time long

compared to the coherence time of the 0' gives

Ptime 2
average

2

The point is now, thav the average of E a. over an ensemble of areas. 1 2
A gives (P) as before, but the vari nci in E ai is not of order (P21

but rather of order (P)(L 2/A), whtre L is1the larger of the coher-

ence length of the radiation and the relevant coherence length of the

ocean. Thus, for an incoherent source the accuracy of a measurement

does increase with A.
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The reader may wonder why, in the case of a coherent source, we

did not average the power equation over time in order to obtain a

result similar to that just described. 'Te reason is that the time

scale involved is vastly different. If an incoherent source has a

coherence length L, its coherence time is very small, being on the

order of L/c, where c is the velocity of light. With a coherent source

the corresponding time is the coherence time of the ocean surface.
This is on the order of L'/v, where L' is a coherence length for the

ocean and v is a typical wave velocity. It is the large ratio c/v a
109 that makes coherent and incoherent sources so different.

Finally, it should be pointed out that measurement of Bragg scat-

tering has some statistical properties which are different from those

of specular reflections. Suppose, for example, that we make many

measurements of specular reflection from a single patch of ocean sur-

face using various wavelengths of incident radiation and angles of

incidence, but completing all the measurements within one coherence

time. The statistics of the measurement have not been improved in

this case. No matter what angle or wavelength we use to measure

specular reflection we are always measuring the same quantity, namely
the mean square slope. Thus we might as well have carried out all the
measurements at the sams wavelength and angle, gaining no improvement

in statistics. Bragg scattering is different, however. By carrying
out the measurement at different angles and wavelengths we are measur-

inr different Fourier coefficients of the correlation function Pl.
Since these Fourier components are statistically independent each

measurement gives new information and the statistics can be improved.
As an example, suppose we wish to measure pl(O) which is the Fourier

component integrated over t-space. According to our formulas in Sec-

tion III, scattering at moderate elevation angles samples the Fourier22. 2
components of p, over an area of order kradar m in 4-space, where m2

is the mean-square slope of the ocean surface. Since there are m-2

such areas available, we can make m-2 independent measurements whose
sum (which gives p1(0)) w"ill have a variance of m2 times the variance

of a single measurement. Since m2 is of order 10-4 this is a non-

trivial increase in statistical accuracy.
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PTo detect ripples on the surface of the sea by passive electro-

magnetic means several different wavelengths may be employed. The

question naturally arises as to which wavelength range is most suit-

able. The answer depends not only on the physics of the interaction

of electromagnetic waves with the surface of the ocean but also on

the technology of detectors. )In this section a comparison of the

infrared and centimeter wavelength ranges will be made.

Several physical effects contribute to the detection of surface

ripples by electromagnetic waves. Only one of these will be considered

here. A detector pointed at the sea surface receives reflected radi-

ation from different portions of the sky due to the presence of the

ripple. Since the radiance of the sky varies with elevation, the

presence of the ripples will lead to an average variation in the re-

ceived radiance and the detection of the ripples.

Quantitatively, the spectral radiance (power per unit area per

unit solid angle per unit wavelength) Wdet (X, N) received from a

direction given by a unit vector N at wavelength X consists of two
parts: .i) the reflected radiance of the sky at a direction N re-

lated to N by the law of reflection and (2) the emitted radiance of
the sea itself. In terms of the spectral radiance of the sea Wse

that of the sky Wsky' the reflectivity p of sea water, the zenith di-

rection z, and the normal to the sea surface N we write

Wdt(X,Nd) = p(X,.N)Wsky (),Z-Ns) + [l-p(X,z.N)]Wea (X) (1)

The angle of incidence is related to the angle of reflection by

N (-I + NN)N (2)-s
r

.I. 109
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where I is the unit dyadic. For small sea slopes, N may be written

as z + e, Eq. (1) expanded in powers of e and averaged over the dis-

tribution of sea slopes. The averages of e and e! may be expressed

in terms of the r.m.s. sea slope, m, by

Appedix

2

9 %m2 [I - zz] (3)

Expressed in terms of the zenith angle we then have (see Appendix)

for the average variation in received radiance

2[ !2Wsk ' y 6Wsky 6p
'Wdet(X,) m P[- + Coto ! + 8- -r -0

(4)

+ (sky - Wse a ) 2- + C P%

The sky radiance contrast arises from two sources--absorption and

elastic scattering. Elastic scattering is important only for wave-

lengths :2p because of the wavelength dependence of the elastic cross

section and the size distribution of the scattering particles. In that

region, the sky contrast arises because on the average the reflected

radiation originates one mean free path length away and there are more

scatterers at low elevations near the horizon than at high elevations

near the zenith. This effect can lead to strong radiance contrasts at

low elevation angles (see Fig. 1) of the order

1 /scale height

(elevation angle) 4 |for scatterer /(mean free path)
(density 1/

4 1 kml0 km (P)

Observations at such small angles from airplanes are different because

at typical airplane heights the observation distance is comparable

with the mean free path. We will not consider the sky constant from

elastic scattering further.
110



I

iThe important factor contributing to the sky radiance contrast

ris absorption. On the average the reflected radiance originates one

attenuation distance L(X) away at a height L(X) sin (elevation engle).

Since the temperature of the atmosphere and hence the radiance varies

with height thds will lead to a greater radiance at the horizon than at

zenith. The resulting contrast will be small for those wavelengths

where the absorption is large and large when the absorption is small.

* Figure 2 shows the experimental sky radiance for various angles

in the infrared range. No contrast is observed in regions of strong

absorption (e.g., 5i and 151) while the maximum contrast is obtained

in the region about l0p. In figure 3 the sky radiance (and its equiv-

alent temperature) from this data at 10 is plotted as a function of

angle. Also plotted on the same graph is the spectral radiance for
01.54 cm normalized to the same height at e = 90 . Several features are

clear. Because atmospheric absorption is stronger at 10P than 1.5 cm

the temperature contrast is smaller in the infrared region than in the

microwave. However, because the dependence of radiance on temperature

in the infrared is exponential (hc/XkT - 5) while in the microwave it

is linear (hc/%kT - 1/50), there is not a great difference in the ra-

diance constrasts.

These curves are the first elements which enter into a calcula-

tion of 6Wdet/Wdet . The second element is the reflectivity. This is

estimated from the standard Fresnel formulae. For the X = 1.5 cm the

curves of these quantities are already in hand in Fig. 4

The largest value of 6Wdet is obtained at high angles. At a

typical large angle of 0 = 750 we find by crudely estimating the de-

rivatives of these curves

SWet 28det ; 0.6 m , m in radians, X = 1.5 cm.
Wdet

Taking a temperature resolution of 0.20 K we have approximately for

X = 1.54 cm.
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Wdet 00 m 2, m in radians

inst

where 6Winst is the instrumental radiance resolution.

For the 10p wavelength the index of refraction was computed and

plotted in Fig. 4 using an index of refraction of 1.3. The curves of

Wdet for horizontal and vertical polarizations are given in Fig. 5.

Crudely estimating Eq. (4) for e = 750 one finds

6Wde
det 0.6 m2 , m in radians, X = 10

det

The similarity of this number with that obtained for X = 1.54 cm re-

flects the similarity of the sky contrasts at the two wavelengths.

if we take 6T = 0.01K for the temperature resolution in the

infrared we find

Isit -/c T 21-

det -hdet) det

Thus for X = l0i

6Wdet 2
6- dtnst 3000 m , m in radians.

Inst

The conclusion is then that the infrared is favored over micro-

wave radiometer by roughly a factor of 30. The basic reason for this

is that the window at l0p is sufficiently transparent that the sky

radiance contrasts are anlmost the same at the two wavelengths, while

the resolution of the infrared is better by roughly a factor of 30.
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APPENDIX

DERIVATION OF EQUATION (4)

Let n = normal to sea surface

n = direction to observer

n = direction seen on sky

Snell's law is expressed by

nxn =-nxn
- 0 - - s

Forming the vector product of both sides with n,

n x (n x n n xn x ns)

whence
n(n -n n(n • ns ) + ,ts

Since

n n n n

we have

n =-n + 2n(n )=(- I + 2nn) •n

The detected radiance is equal to tbe incident radiance

Wdet = Wsky (z - ns)

where z is the zenith vector
=W (z .(-I + 2n

sky n )

Now for small sea slopes n =z + e

e = (sine cosy, sine sinp, cose-l)
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or

c= (Ocoscp, 8siny, - 92/2) + 0(0 3)

Therefore, accurate to second order in 9, we have

Wdet Wsky • [ + 2,z + 2(z + ) + 2ee] n noJ

= W [z • n + 2z[ + +
sky o +] "

= W (z • n) + [ (ze + ez) • n + 2z • (:)Wysn'o
sky o) + )sky oo2

+ 2 W" z (ze + e.z ]2 +

The following averages will be needed:

<>= - (e2) z

(,)= aI + b zz

a = (02)

a + b 0 b I - 0 z2

Using these results, the first bracket in the expansion of Wdet becomes

on averaging -2 (62) (z n ). The second bracket is equivalent to

00

2[e(I + zz • n] 2 -=2no • (I + z) • .c (I + zz) • n

= (e2) n • (i +z ) • (I -zz) • (1 + zz) •*

2 Z)2) 2 2 2 •

=(82)[i- (no • z)] e sin2O
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where o is the angle of observation measured from the vertical. Thus,

Wdet = W(cose ) + (82) [-2W' cos8o + W" sin2 
O]

Now
W/ dW 1 W/ 1 d dW 1

d8 sinO sinO dG

1 d2W cos8 dW
sin--2 sin3 d

*T Thus,

Wdet W(o ) + 2 +cot8-

This computation was made leaving out the reflectivity. Actually,

Wdet = p(n. -o ) Wsky (z • !s)

Expanding the reflectivity in the same manner as before,

p(n • 0) = p (z • no + •0 )

= p(z • no) + p'(e • n0 ) + p"(C . n0 )2 +

Including the extra terns in the expression for Wdet
f2

W =[p + p' (e • n ) + ( ) p"(e - n )2 1] W
det o -10 sky

+ W' [2z • (ze + z) • n + 2z ()o]
sky - -~o -

+ 2W" EZ-( + z)-n ]21
sky [1 (0 + ) •
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EXTRA TERMS 2 - s sky

Wdet =Wsky + sky + cote 6e 

+ 2P'( n o z z + )•no] W'y 0 sky

+ p'((e• n ))Wsky + ()p"*( • n )2 Wsky

The first average is equivalent to

n a c%( + _n o ) <2/2) Z • (I - AZ)('l + ZZ) n n

= ((e2)/2) n • (I- z)) • n~~-0

= (62 )/2) sin 2 0

The second average is simply ((e 2 )/2) cos e0 . The third average is

n (ee)n = ((62)/2)sin 2e0

Assembling these results and noting that (62) is equivalent to the

mean-square slope m2 within the approximations used here, we obtain

2 [2W. W lsky
Wdet Wsky + m M + Coto -0

2 Sm 2 2
+ i. .sin 0 + (m /2) cote Wsink@~U/ \O/\W k

+ (m2/4)sin2  s 1 2 - coskT 2 W sky
sin 6 sine
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The net result is that the variation in radiance is given 
by

6w 2 [ a2 w 1Sy+Cooa k
SWd=m p L .- a + cotCoto

14e )

r + + L +cote

This -xpression accounts for the contribution to the variation 
in

received radiance due to the first term in Eq. (!). The contribution

of the second tem can be obtained by inspection of the 
above expres-

sion (replacing Wsky by Wsea and noting that Wse a is independent 
of 0).

Thus, the contribution of the second term is

6Wdet = (/4) Wsea [2P +coto p1

Combining these results yields Eq. (4) of the test.
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FIGURE 1. Spectral radiance of a clear sky, showing the dependence of the
scattered radiation on elevation angle. Measurements made from Colorado Springs,
Colorado, near noon in September; elevation angles 00 (top curve), 7.20 and 30
(lowest curve). Note that the ordinate scale for the short-wavelength set of curves
is 10times larger than the scale of tle longer-wavelength curves. (From Bell et al
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FIGURE 2. Spectral radiance of a clear sky (for angles of elevation 0, 1.8,

3.60, 7.20, 14.50, 30 ° , and 90 above the horizon.) Ambient temperature 80
measured at night in September from Elk Park Station, Colorado, 11,000 ft above
sea level. Ambient temperature about 27°C; measured in June from Cocoa Beach,
Florida. (From Bell et al 0960]
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Sophisticated signal processing is claimed by some of its adve-

cares to make possible remarkable improvements in detection systems.

While this is true in some cases, in others the claims are extravagant.

This note is written to provide a basic criterion for detection that

depends only on hardware capability and by which ultimate performance

limits can be set: limits that can be approached but not surpassed

by astute processing and presentation. The basis for this is the work

of Harris* on decision theory. The derivation of one of his main re-

sults is abstracted here for completeness.

We will look at the detection problem as a binary decision between

two signal sources denoted I and II, with the signals accompanied by

additive Gaussian noise. For definiteness, take a two-dimensional data

presentation with mean flux densities of Hi(x,y) and Hii(xy) for the

sources I and II. The likelihood that a set of flux readings Rl, R2
2 2 2

... R with dispersions a 1 , a2 . n for patches of area is ob
served in response to source I is

L(I) = n e i - H i AXAy) 2 /2a 2]

i=l f2j-7Tc

where Ri is the flux measured at the display point (xi,yi), and Hii

Hi(xiyi). Similarly, the likelihood of the same readings in response

to source II is

fLI)=n 1 2 21L(II) = r exp[-(Ri - HII i AxAy) /2'2
2 ~ 16 au2Axy /~

This formulation assumes that the incremental area AxAy is sufficiently

large for the observed readings Ri to be regarded as statistically

independent.
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F2 the purpose of this discussion, the relative risks of error

in deciding that source I is present when source II is really present,

and vice versa, can be ignored. Under these conditions, the decision

rule is to select the alternative with the larger likelihood. In terms

of

= 21og[L(I)/L(II)]

the procedure is to decide that I is present if ' > 0, and to decide

that II is present if < 0. Specifically,

n

H...) Ax~y + (H -H )(Ax)( )i= LL ±i Ii 12 y

Now suppose that source I is actually present; then

R. = Hii AxAy + n.

with

(n2) = 02 = v. AxAyi i i

Here, ni represents the additive Gaussian noise, and vi is the

noise variance per unit area. Substituting this into the expression

for * yields

n (Hii - H1 i)
2AxAy n 2ni (HII - Hi)

i=l i=l v

The MEran of I can be expressed as

= [H I
I ( x  y )  - H (x y) 2 

dxd2

PI :v(X,y) dd

124



I The integral is taken over the area of presentation (e.g., the field

of view of display). The variance of is calculated to be

The probability of correct decision (i.e., that I > 0) is

p = (1l/2)f e-z /2 dz (1)

The probability of a correct decision depends on the single parameter

/z = () jS/N)2 dxdy (2)

p when N denotes the background noise per unit area.

Well-matched processing and data presentation can take full ad-
vantage of the signals provided by detection equipment, but cannot

improve the probability of a correct decision over that implied by

* Eq. (1) and (2).
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